School Choice and the Housing Market

Aram Grigoryan, Duke University*

September, 2021†

Abstract

We develop a unified framework with schools and residential choices. We show that with neighborhood priorities (i.e., when families receive higher priorities at neighborhood schools) the celebrated Deferred Acceptance mechanism improves aggregate or average welfare compared to the traditional neighborhood assignment. Additionally, the Deferred Acceptance mechanism improves the welfare of lowest-income families, both with or without neighborhood priorities. The findings provide a major theoretical justification for the widespread application of the Deferred Acceptance mechanism for school assignment. Simulations reveal substantial gains for aggregate and lowest-income family welfare. We also provide a theoretical foundation for analyzing general assignment games with externalities.

*Department of Economics, Duke University, ag404@duke.edu. I am grateful to Atila Abdulkadirouğlu, Caterina Calsamiglia, Umut Dur, Bob Hammond, Margaux Luflade, Thayer Morrill, Bobby Pakzad-Hurson and Alexander Teytelboym for helpful discussions and comments. I also appreciate the helpful comments by the economic theory seminar participants at Duke University and North Carolina State University and conference participants at the Fourteenth International Conference on Game Theory and Management, the 2021 Africa Meeting of Econometric Society, the 2021 Asian Meeting of the Econometric Society and the 2021 China Meeting of the Econometric Society.

†First draft, January 2021.
1 Introduction

According to the Brookings Institution’s Center on Children and Families, the proportion of large school districts in the US that allow parental choice over public schools has doubled from 2000 through 2016 (Whitehurst, 2017). Many school districts have replaced the traditional neighborhood assignment with choice-based assignment mechanisms which reflect recent advances in matching theory and market design. A prominent example is the widespread application of the celebrated Deferred Acceptance mechanism of Gale and Shapley (1962). Following a scholarly article by Abdulkadiroğlu and Sönmez (2003), Deferred Acceptance has been adopted for school assignment in New York City, Boston, Chicago, Denver, Washington DC and Newark, among many others.

Under neighborhood assignment, families send their children to the designated neighborhood schools. In contrast, the Deferred Acceptance mechanism assigns children to schools based on families’ reported preferences and their priorities at schools. The Deferred Acceptance mechanism and its welfare properties are extensively studied in the matching theory literature. However, previous papers predominantly assume that the preferences and priorities are exogenously given, while in reality, they depend on families’ endogeneous neighborhood choices.\footnote{Neighborhood choices affect preferences since families tend to prefer schools that are closer to their homes (e.g., Glazerman (1998), Burgess, Greaves, Vignoles, and Wilson (2011), Abdulkadiroğlu, Agarwal, and Pathak (2017a), Abdulkadiroğlu, Pathak, Schellenberg, and Walters (2020b)). The effect of neighborhood choices on priorities are by design: under a version of Deferred Acceptance mechanism families are granted higher priorities at their neighborhood schools.} It has been empirically documented that families strategically choose where to live, and they do so by taking into account the schooling options (Chung, 2015; Kane, Riegg, and Staiger, 2006; Reback, 2005). Those strategic neighborhood choices affect families’ probabilities of being assigned to different schools through their effects on preferences and priorities.
In this paper we develop a unified framework with school choice and a housing market, where families’ neighborhood choices, and accordingly preferences and priorities, are determined endogenously. Our goal is to evaluate the welfare and distributional consequences of the widespread education reform of switching from neighborhood assignment to Deferred Acceptance. The timing of the model is as follows. The city or the school district announces the school assignment mechanism. Then, families make neighborhood choices optimally, given the school assignment mechanism, other families’ neighborhood choices and the market-clearing neighborhood prices. Lastly, children are assigned to schools through the announced assignment mechanism.

Our contributions are twofold. First, we show that when there are neighborhood priorities (i.e., when families receive higher priorities at neighborhood schools), the Deferred Acceptance mechanism improves aggregate (or average) welfare compared to neighborhood assignment. Second, we show that under fairly general conditions the lowest-income families prefer the Deferred Acceptance mechanism, both with and without neighborhood priorities, to neighborhood assignment. To the best of our knowledge, ours is the first theoretical analysis of the problem in a general model with endogenous neighborhood choices and unrestricted preference domain. We now elaborate on the results.

Welfare comparisons between the Deferred Acceptance and neighborhood assignment are in general ambiguous. On one hand, the former may generate higher welfare as it gives families more flexibility to reside in their preferred neighborhoods and enroll their children to their preferred schools, potentially outside of their neighborhoods. On the other hand, neighborhood assignment may generate higher welfare as families who value some school the most can ‘buy their way in’ by purchasing a house in that neighborhood. Despite this trade-off, we show that when the district applies neighborhood priorities, Deferred Acceptance mechanism generates higher aggregate welfare than neighborhood assignment. Like neighborhood assignment, the Deferred Acceptance with neighborhood priorities allows families’ with high values to enroll at their
preferred schools by purchasing a house in the corresponding neighborhoods. Moreover, it allows families to enroll at a school outside of their neighborhood when there are available seats. We also show that, under some conditions, Deferred Acceptance with neighborhood priorities generates higher aggregate welfare than the version of Deferred Acceptance without neighborhood priorities.

Neighborhood priorities may be thought of as a compromise between neighborhood assignment and open enrollment without neighborhood priorities (i.e., where all families receive a fair shot at each school). In Boston Public School (BPS) there have been constant debates about using neighborhood assignment or allowing choice (Daley, 1999; Dur, Kominers, Pathak, and Sönmez, 2018; Menino, 2012). Those debates have resulted in redesigning the school assignment system by granting higher priorities to families (at a fraction of seats\(^2\)) at their neighborhood schools (Dur et al., 2018). Neighborhood priorities are applied not only in BPS, but in predominant majority of the US school districts allowing parental choice. Our theoretical results that the Deferred Acceptance mechanism with neighborhood priorities improves aggregate welfare compared to neighborhood assignment and, under some conditions, compared to the Deferred Acceptance without neighborhood priorities, potentially provides a rationale for the widespread application of neighborhood priorities for school assignment. To the best of our knowledge, our findings are the first theoretical justification of using neighborhood priorities for welfare considerations.

Although aggregate welfare is improved, some families may experience welfare losses when switching from neighborhood assignment to the Deferred Acceptance mechanism. The question that we ask next is how the mechanisms compare in terms of the welfare of lowest-income families. The question is important since the welfare of low-income and disadvantaged communities has always been a major consideration for education policy (Fuller, 1996; Orfield and Frankenberg, 2013). In Section 5 we extend our model so

\(^2\)In 1999, BPS adopted what is known as the ‘50-50 seat split’, where families are granted higher priorities at only half of the seats at their neighborhood schools.
that families are differentiated by incomes or budgets. A budget denotes the maximum amount a family can pay for a house. Proponents argue that school choice weakens the links between schools assignment and the housing market, and potentially leads to more equitable outcomes by allowing families in less affluent neighborhoods to apply to higher quality schools outside of their neighborhoods (Bedrick and Burke, 2015; Coons and Sugarman, 1978). Although the argument is intuitive, it has limited theoretical justification. Papers on the topic typically analyze very stylized models where families have identical preferences over neighborhoods and schools. Such an assumption is highly unrealistic for the school choice setting.\(^3\) To the best of our knowledge, ours is the first work to compare distributional effects of the Deferred Acceptance mechanism with a general preference domain. We show that the proponents' conclusions may not hold in general: lowest-income families may either benefit or be hurt by open enrollment. However, we show that under some fairly general conditions lowest-income families prefer both versions of the Deferred Acceptance mechanism to neighborhood assignment. Our sufficiency condition has two parts: (1) underdemanded (or to put it simply, cheapest) neighborhoods have underdemanded (least selective) schools, (2) underdemanded neighborhoods remain underdemanded when the school assignment mechanisms is switched from neighborhood assignment to Deferred Acceptance.\(^4\) The former condition is consistent with the empirical evidence: (Owens and Candipan, 2019) document that in large metropolitan areas in the US the less affluent neighborhoods typically have underperforming schools. The latter condition is intuitive: an underdemanded neighborhood is unlikely to significantly gain in value when the school assignment mechanism is switched from neighborhood assignment to Deferred Acceptance. We show that the conditions are satisfied for some natural special cases. Thus,\(^3\) For example, it has been shown that families prefer schools that are closer to their homes (Abdulkadiroğlu et al., 2017a,2; Burgess et al., 2011; Glazerman, 1998).\(^4\) We show that (1) and (2) are also ‘necessary’ conditions for lowest-income families to prefer Deferred Acceptance over neighborhood assignment, in a sense that otherwise the welfare comparisons would fail to be robust to small changes in the underlying economy.
our findings provide theoretical foundations for a major argument in the school choice debate, namely, that lowest-income families benefit from choice.

Finally, our work provides a theoretical foundation on studying assignment games with externalities. In our model, a family’s valuation for a neighborhood depends on other families’ neighborhood choices through the latter’s effects on the family’s school assignment probabilities. These externalities may preclude the existence of a competitive equilibrium in a discrete economy. However, we show that a competitive equilibrium always exists in a large economy with a continuum of families. The result builds on that in a large economy a family’s school assignment probabilities are continuous in other families’ neighborhood choices. This allows us to use a novel application of Schauder-Tychonoff fixed point theorem to establish equilibrium existence. Not only does the continuum model circumvent the equilibrium non-existence issue, but it also makes the analysis tractable. In the continuum model we derive closed-form expressions for school assignment probabilities, which are used for proving some of the results. Additionally, we show that the continuum model is an arbitrarily close approximation of a sufficiently large discrete one. This implies that all results, such as existence of a competitive equilibrium and welfare comparisons across mechanisms, hold in an approximate sense for every sufficiently large discrete economy. Equilibrium existence and large market approximation results extend to general assignment games with externalities, such as complementarities or peer preferences.

The remainder of the paper is organized as follows. Section 2 reviews related literature. Section 3 describes the continuum model and school assignment mechanisms. Section 4 compares aggregate welfare across the mechanisms. Section 5 introduces the model with budget constraints and studies the welfare of lowest-income families. Section 6 shows that the results established for the continuum model hold approximately for sufficiently large discrete economies. Section 7 discusses simulation results. Section 8 concludes. All omitted proofs are in the Appendix. Alternative school assignment mechanisms (such as Top Trading Cycles and Immediate Acceptance) and further
extensions are studied in the Online Appendix.

2 Related Literature

Welfare and distributional consequences of school choice have been theoretically analyzed by several earlier works (Avery and Pathak, 2020; Barseghyan, Clark, and Coate, 2013; Calsamiglia, Martínez-Mora, and Miralles, 2015; Epple and Romano, 2003; Lee, 1997; Xu, 2019). These papers feature stylized models, where: (1) types are described by a single parameter which reflects ability or income, (2) families’ have no preferences over neighborhoods, (3) schools are ranked by quality and all families prefer the higher quality schools, (4) valuations for schools are supermodular in income and school quality. Some of these assumptions are highly unrealistic in the context of school choice. For example, assumption (3) implies that families have identical ordinal preference rankings over schools. Our work, on the other hand, features a general preference domain with arbitrary valuations over the family’s joint assignment to neighborhoods and schools. Such unrestricted heterogeneity is an important aspect in Gale and Shapley (1962) and the vast literature on the two-sided matching literature that followed this seminal work.

The generality of our model allows to reveal novel insights on welfare and distributional consequences of school assignment mechanisms which are missing from prior papers on the topic. First, in contrast to most works above, that are mainly interested in distributional outcomes, our paper also compares school assignment mechanisms in terms of aggregate or average welfare. Such an analysis is meaningless when families have identical ordinal rankings and supermodular valuations: in that setting, neighborhood assignment is the unique aggregate welfare maximizing rule. Our work shows that this is not true in general. In our general setting, Deferred Acceptance may create higher aggregate welfare than neighborhood assignment. Moreover, we show that it always
does so when there are neighborhood priorities. Second, our paper provides a general
sufficient condition for lowest-income families to prefer Deferred Acceptance to neigh-
borhood assignment. Papers on the topic have studied the question in stylized models
and their conclusions about lowest-income families’ welfare depends on the preference
restrictions that they impose. For example, in Calsamiglia et al. (2015) and Xu (2019)
lowest-income families always prefer Deferred Acceptance to neighborhood. We show
that with general preferences lowest-income families may either benefit or be hurt when
switching from neighborhood assignment to Deferred Acceptance. Avery and Pathak
(2020) make an analogous observation in a model with peer effects and endogenously
priced outside options. Unlike all the paper above, we provide and motivate a general
sufficient condition which guarantees that lowest-income families benefit from Deferred
Acceptance.

Our paper is also related to two-sided matching problems with endogenous preferences
and/or priorities (Bodoh-Creed and Hickman, 2018; Peters and Siow, 2002). Papers
on the topic assume unidimensional family types and supermodular valuations for
tractability. Bodoh-Creed and Hickman (2018) write that “the richness of the prefer-
ences admitted by most models building on Gale and Shapley ... makes it very difficult
to include an element of endogenous student quality”. Our setting allows general pref-
erences and we apply a continuum framework to gain tractability.

The second part of our work is related to papers that study assignment problems with
budget-constrained agents. In particular, Che, Gale, and Kim (2013a) and Che, Gale,
and Kim (2013b) show that in that environment a random assignment with resale
improves aggregate welfare compared to the market equilibrium. In our model, there
is no resale option for school assignment and therefore aggregate welfare comparisons
are ambiguous. However, what we show is that under fairly general conditions random
assignment improves the welfare for agents with smallest budgets.

Our work contributes on the relatively new strand of matching theory literature on ‘pri-
ority design’ (Celebi and Flynn, 2021; Owens and Candipan, 2021). These paper study optimal priority structures for general assignment mechanisms, while we are interested in how priorities enhance welfare for a particular assignment mechanism, namely the Deferred Acceptance. Our results suggest that using priorities improve aggregate welfare. First, we show that with neighborhood priorities the Deferred Acceptance mechanism always generates higher aggregate welfare than neighborhood assignment. This is not necessarily true without neighborhood priorities. Second, we show that, under some conditions (such as when families have identical ordinal preferences over neighborhoods and schools), the Deferred Acceptance mechanism generates higher aggregate welfare with neighborhood priorities than without them. The last finding is in the spirit papers that show that incorporating ‘signaling devices’ into matching problems without money may be welfare improving (Abdulkadiroğlu, Che, and Yasuda, 2015; Coles, Cawley, Levine, Niederle, Roth, and Siegfried, 2010; Hylland and Zeckhauser, 1979; Lee and Niederle, 2015). When there are neighborhood priorities, families are allowed to signal their high valuations for schools by choosing the corresponding neighborhoods. Thus, neighborhood choices act as signaling devices in our model, potentially improving aggregate welfare.

Lastly, our work contributes to the literature on large matching markets (Abdulkadiroğlu et al., 2015; Azevedo and Leshno, 2016; Gretsky, Ostroy, and Zame, 1992,9; Kamecke, 1992; Leshno and Lo, 2017) and assignment externalities (Pycia and Yenmez, 2019; Sasaki and Toda, 1996). Unlike the continuum assignment game of Gretsky et al. (1992) and Gretsky et al. (1999), in our model there are assignment externalities: a family cares not only about her own neighborhood choice, but also those of other families since those affect the family’s school assignment probabilities. Although externalities preclude the existence of competitive equilibrium in finite discrete markets, we show that a competitive equilibrium always exists in large markets or a continuum model. Analogous results have been established in alternative matching environments with externalities. Examples include Gersbach, Haller, and Konishi (2015), Gersbach and
Haller (2011), Nguyen and Vohra (2018), Azevedo, Weyl, and White (2013) Azevedo and Hatfield (2018), Che, Kim, and Kojima (2019) and Greinecker and Kah (2021). Our model is closest to the last paper which studies a large market two-sided matching problem with externalities. The authors assume that agents have continuous preferences over a superset of assignments to prove the existence of a competitive equilibrium. The assumption is abstract, and the paper does not clarify whether it is satisfied for specific matching problems. We on the other hand, do not impose such an assumption, but instead we prove that in our model families’ expected utilities are equicontinuous in neighborhood choices,\(^5\) which is sufficient to guarantee existence of a competitive equilibrium. Our existence result can be applied more broadly to prove equilibrium existence in general assignment games with externalities (such as peer preferences or complementarities) with equicontinuous utilities.

3 The Continuum Model

There is a unit mass of families with a single child and a finite and equal number of neighborhoods \(H\) and schools \(S\). There is a unique school in each neighborhood \(h \in H\). We denote that school by \(s_h \in S\). The capacity \(q_h \in \mathbb{N}\) of neighborhood \(h\) is the mass of families that a neighborhood can accommodate. Similarly, the capacity \(q_s \in \mathbb{N}\) of school \(s\) is the mass of families that can enroll (their children) at school \(s\). Unless mentioned otherwise, we assume that \(q_h \leq q_{s_h}\) for all \(h \in H\). The assumption is necessary for defining neighborhood assignment, i.e., schools need to have enough capacity to accommodate all neighborhood children.

Each family has a type \(v \in [0, 1]^{\left|H\right| \times \left|S\right|} := V\), where \(v(h, s) \in [0, 1]\) denotes the valuation for residing in neighborhood \(h\) and enrolling at school \(s\).\(^6\) The economy is described

\(^5\)The last result uses that school assignment probabilities under the Deferred Acceptance mechanism change continuously with families’ neighborhood choices.

\(^6\)We assume that families only care about their own assignment to neighborhoods and schools.
by a (Borel) probability measure η over the type space V.

Valuations induce preference rankings, which are complete, reflexive and anti-symmetric relation on S. Let P be the space of preference rankings. The preference ranking $\succ_{vh} \in P$ of type v, conditional on residing in neighborhood h, satisfies

$$v(h, s) > v(h, s') \Rightarrow s \succ_{vh} s'.$$

When $v(h, s) = v(h, s')$, ties are broken arbitrarily. For example, we may assume that a fixed ordering over schools is used to break ties.

Let $\bar{H} := H \cup \{0\}$, where 0 denotes the families’ outside option. Neighborhood choices τ is a probability measure on $V \times \bar{H}$, with the property that

$$\tau\left((v,h) \in V \times \bar{H} : v \in U, h \in H\right) = \eta(U),$$

for any measurable $U \subseteq V$. The interpretation of neighborhood choices τ is that for any measurable $U \subseteq V$ and $H' \subseteq \bar{H}$, $\tau\left((v,h) \in V \times \bar{H} : v \in U, h \in H\right)$ denotes the mass of families whose types are in U and who choose to reside in neighborhood in H'.

We denote the space of neighborhood choices by \mathcal{T}.

In general, school assignment probabilities depend on the reported preference rankings of families. Throughout this work we consider strategyproof school assignment mechanisms, where each family has a dominant strategy to report preferences truthfully. Thus, assuming truthful reports, valuations and neighborhood choices uniquely pin down the preference reports of families through equation 1 (and the tie-breaker).

We denote by $\lambda_{vs}(h, \tau) \in [0,1]$ the probability that type v is assigned to school s. The probability depends on her neighborhood choice h, the population’s neighborhood choices τ and the school assignment mechanism ϕ. Later in this section we analyze different school assignment mechanisms and how these probabilities are determined for each of them. Before that, we define competitive equilibrium.

Although, such valuations profile is very general, it assumes away the possibility of families having peer preferences. As we elaborate in the Discussion section, this may not be without loss of generality.
Given school assignment probabilities and neighborhood price vector \(p \in [0, 1]^{|H|} \), the expected utility of type \(v \) choosing neighborhood \(h \in H \) is equal to

\[
 u^\phi_v(h, \tau) - p_h.
\]

where \(u^\phi_v(h, \tau) := \sum_{s \in S} \lambda^\phi_{vs}(h, \tau) v(h,s) \). Also, let \(u^\phi_v(0, \tau) := 0 \) for all \(v \in V \) and \(\tau \in \mathcal{T} \).

Definition 1. For neighborhood choices \(\tau \in \mathcal{T} \) and price vector \(p \in \mathbb{R}_+^{|H|} \), we say a pair \((\tau, p)\) is a **competitive equilibrium (CE)** of mechanism \(\phi \) if it satisfies the following conditions:

1. \(\tau\left((v, h) \in V \times \bar{H} : h = \operatorname{arg\ max}_{h' \in \bar{H}} u^\phi_v(h', \tau) - p_{h'}\right) = 1, \) where \(p_0 := 0 \),
2. \(\tau\left((v, h) \in V \times \bar{H} : h = h'\right) \leq q_{h'}, \forall h' \in H, \)
3. \(\tau\left((v, h) \in V \times \bar{H} : h = h'\right) < q_{h'} \Rightarrow p_{h'} = 0. \)

The first two conditions in Definition 1 are the optimality and feasibility of neighborhood choices, respectively. The third condition says that neighborhoods with excess capacity are priced at zero. This would guarantee that the sellers of vacant houses in the neighborhood have no incentives to undercut the prices.

We now derive school assignment probabilities for different assignment mechanisms.

Neighborhood Assignment.

Under neighborhood assignment (NA), families are assigned to their neighborhood schools. Then, for all \(s \in S, h \in H \) and \(\tau \in \mathcal{T} \),

\[
 \lambda^{NA}_{vs}(h, \tau) = \begin{cases}
 1 & \text{if } s = s_h, \\
 0 & \text{otherwise.}
 \end{cases}
\]

Deferred Acceptance.
Deferred Acceptance for the continuum model is defined as in Azevedo and Leshno (2016) and Abdulkadiroğlu et al. (2017a). We consider two versions of the Deferred Acceptance mechanism: in the first version families do not receive higher priorities at neighborhood schools, and in the second version they do.

Deferred Acceptance without Neighborhood Priority (DA).

School assignment under DA is determined based on families’ preferences, lottery numbers and market clearing cutoffs, or simply cutoffs. Preferences are decided by neighborhood choices through equation 1. Lottery numbers are drawn uniformly and independently from the unit interval. Formally, neighborhood choices \(\tau \) result in a probability measure \(G_\tau \) over \(P \times [0,1] \), given by

\[
G_\tau\left((\succ, r) \in P \times [0,1] : \succ \in P', r \in (r_0, r_1)\right) = \tau\left((v, h) \in V \times \bar{H} : \succ_{v h} \in P'\right) \times \left(r_1 - r_0\right),
\]

for each \(P' \subseteq P \) and \((r_0, r_1) \subseteq [0,1] \). Thus, \(G_\tau\left((\succ, r) \in P \times [0,1] : \succ \in P', r \in (r_0, r_1)\right) \) equals the mass of types with preferences in \(P' \) and lottery numbers in the interval \((r_0, r_1)\).\(^7\)

Cutoffs are derived through an iterative procedure that we describe below. For a vector \(c \in [0,1]^{|S|} \), the demand function \(D : [0,1]^{|S|} \rightarrow [0,1] \) is given by

\[
D_s(c) = G_\tau\left((\succ, r) \in P \times [0,1] : r \geq c_s \text{ and } s \succ s' \text{ for all } s' \text{ with } r \geq c_{s'}\right).
\]

In words, \(D_s(c) \) is the mass of families whose lottery numbers exceed \(c_s \), and who prefer \(s \) to any other school \(s' \) where their lottery numbers exceed \(c_{s'} \). For \(c \in [0,1]^{|S|} \) and \(x \in [0,1] \) we denote by \(c(s, x) \in [0,1]^{|S|} \) the vector that differs from \(c \) only by that \(c_s(s, x) = x \).

\(^7\)The versions of Deferred Acceptance described in this section apply single tie-breaking rules, i.e., all schools use the same lottery number for each family. Our results (with slightly modified proofs) hold for the case of multiple tie-breaking, i.e., when different schools use different lottery numbers for a given family. The extension is discussed in Appendix C.
We define a sequence of vectors \((c^t)_{t=1}^\infty\) recursively by \(c^1 = 0\) and
\[
(c^t)^{t+1}_{s} = \begin{cases}
0 & \text{if } D_s(c^t) < q_s, \\
\min \left\{ x \in [0,1] : D_s(c^t(s,x)) \leq q_s \right\} & \text{otherwise.}
\end{cases}
\]

As shown by Abdulkadiroğlu, Angrist, Narita, and Pathak (2017b), \((c^t)_{t\in\mathbb{N}}\) is convergent. Let \(c^{DA} := \lim_{t\to\infty} c^t\) denote the **DA cutoffs**. This cutoffs depend on neighborhood choices \(\tau\), but we omit this dependence to keep notation simple. The DA cutoffs determine school assignment as follows. A family is assigned to school \(s\) if her lottery number exceeds \(c^{DA}_s\), and she prefers \(s\) to any school where her lottery number exceeds the corresponding DA cutoff. The probability of this event is
\[
\lambda^{DA}_{v_s}(h, \tau) = \min\{c^{DA}_{s'} : s' \succ_v h\ s\} \times \max \left\{ 0, \min \left\{ \frac{c^{DA}_{s'} : s' \succ_v h\ s}{c^{DA}_s} \right\} \right\}
\]

The first term in the middle part of equation 2 denotes the probability that \(v\)'s lottery number does not exceed the cutoff at any school that she prefers more than \(s\). The second term is the probability that her lottery number exceeds the cutoff at \(s\), conditional on it not exceeding those in more preferred schools.

Deferred Acceptance with Neighborhood Priority (DN).

Under DN, school assignment is determined based on families’ preferences, lottery numbers, priorities and cutoffs. Again, preferences are decided by neighborhood choices through equation 1 and lottery numbers are drawn uniformly and independently from the unit interval. Families receive priority 1 at neighborhood schools and priority 0 at non-neighborhood ones. Formally, neighborhood choices \(\tau\) result in a probability measure \(G_\tau\) on \(P \times S \times [0,1]\) satisfying
\[
G_\tau\left((\succ, s, r) \in P \times S \times [0,1] : \succ \in P', s \in S', r \in (r_0, r_1)\right) \\
= \tau\left((v, h) \in V \times \bar{H} : \succ_{v,h} \succ_{s_h = v, h} s_h \in S'\right) \times (r_1 - r_0),
\]

14
for each \(P' \subseteq P, S' \subseteq S \) and \((r_0, r_1) \subseteq [0, 1]\). Thus, \(G_\tau((\succ, s, r) \in P \times S \times [0, 1] : \succ \in P', s \in S', r \in (r_0, r_1)) \) equals the mass of families with preferences in \(P' \), who reside in the neighborhood of some school in \(S' \subseteq S \) and whose lottery numbers are in the interval \((r_0, r_1)\). For a vector \(c \in [0, 2]^{\lvert S \rvert} \) the demand function \(D : [0, 2]^{\lvert S \rvert} \to [0, 1] \) is given by

\[
D_s(c) = G_\tau((\succ', s', r) \in P \times S \times [0, 1] : r + 1[s' = s] \geq c_s \quad \text{and} \quad s \succ s'' \quad \text{for all } s'' \text{ with } r + 1[s' = s''] \geq c_{s''}).
\]

For \(c \in [0, 2]^{\lvert S \rvert} \) and \(x \in [0, 2] \) we denote by \(c(s, x) \in [0, 2]^{\lvert S \rvert} \) the vector that differ from \(c \) by that \(c_s(s, x) = x \). Consider the sequence of vectors recursively defined by

\[
c_{s}^{t+1} = \begin{cases}
0 & \text{if } D_s(c^t) < q_s \\
\min \left\{ x \in [0, 2] : D_s(c^t(s, x)) \leq q_s \right\} & \text{otherwise}
\end{cases}
\]

Again, as shown by Abdulkadiroğlu et al. (2017b), the sequence is convergent. Let \(c^{DN} := \lim_{t \to \infty} c^t \) denotes the DN cutoffs. A family is assigned to school \(s \) if her priority at \(s \) plus her lottery number exceeds \(c_s^{DN} \), and she prefers \(s \) to any school where her priority plus lottery number exceeds the corresponding DN cutoff. From the description of DN, it can be verified that the probability of this event for a school \(s \) with \(c_s^{DN} > 1 \) is equal to

\[
\lambda^{DN}_{vs}(h, \tau) = \begin{cases}
0 & \text{if } s_h \neq s, \\
\max \left\{ 0, \min \left\{ 1, c_s^{DN}, s' \succ_{vs} s \right\} - [c_s^{DN} - 1] \right\} & \text{otherwise}
\end{cases}
\]

For a school \(s \) with \(c_s^{DN} \leq 1 \),

\[
\lambda^{DN}_{vs}(h, \tau) = \begin{cases}
\max \left\{ 0, \min \left\{ c_s^{DN} - 1, c_s^{DN}, s' \succ_{vs} s \right\} - c_s^{DN} \right\} & s_h \succ_{vs} s, \\
\min \left\{ 1, c_s^{DN}, s' \succ_{vs} s \right\} & s_h = s, \\
\max \left\{ 0, \min \left\{ 1, c_s^{DN}, s' \succ_{vs} s \right\} - c_s^{DN} \right\} & \text{otherwise}
\end{cases}
\]

We now compare equilibrium aggregate welfare across the school assignment mechanisms.
4 Aggregate Welfare

In this section we establish the existence of CE of DN, DA and NA, and compare the mechanisms in terms of aggregate (or average) welfare.

Definition 2. For two mechanisms \(\phi \) and \(\psi \) we say that \(\phi \) creates higher aggregate welfare than \(\psi \) if for arbitrary CE neighborhood choices \(\tau^\phi \) of \(\phi \) and \(\tau^\psi \) of \(\psi \),

\[
\int u^\phi_v(h, \tau^\phi) d\tau^\phi \geq \int u^\psi_v(h, \tau^\psi) d\tau^\psi.
\]

Here, \(\int u^\phi_v(h, \tau^\phi) d\tau^\phi \) is a shorter notation for \(\int u^\phi_v(h, \tau^\phi) d\tau^\phi(v, h) \).

The definition of aggregate welfare does not account for neighborhood prices. Therefore, it should not be interpreted as the aggregate welfare of the families, but that of the entire economy. That is, the aggregate welfare in our model is the sum of utilities of all families and house sellers, who may be thought of as passive agents in our model.

4.1 Existence of CE

We first discuss existence of a CE of NA. For that mechanism, families’ expected utilities of choosing different neighborhoods do not depend on other families’ neighborhood choices. Hence, our problem is equivalent to a continuum assignment game without externalities (Gretsky et al., 1992). The existence of a (unique) CE of NA is therefore guaranteed by an analogous result for continuum assignment games.

Theorem 1. When \(\eta \) is non-atomic and has full support, there is a unique CE of NA.

Proof. For any \(\tau \in \mathcal{T} \), \(u^\text{NA}_v(h, \tau) = v(h, s_h) \). Let \(\tilde{\eta} \) be a probability measure on \(\tilde{V} := [0, 1]^{|H|} \) given by

\[
\tilde{\eta}(\tilde{V}) = \eta\left(v \in V : (v(h, s_h))_{h \in H} \in \tilde{V}\right).
\]
for all measurable $\tilde{U} \subseteq \tilde{V}$. Since η has full support, so does $\tilde{\eta}$. A CE of NA corresponds to Walrasian equilibrium of the non-atomic assignment model of Gretsky et al. (1999). Therefore, the existence of unique CE of NA follows from their Proposition 6.

Our next result establishes the existence of CE of DN and DA.

Theorem 2. When η is absolutely continuous and has full support, there is a CE of DN and DA.

Proof. Appendix A.

A crucial step for the proof is establishing that school assignment probabilities change continuously with families’ neighborhood choices. Then, the result follows from Schauder-Tychonoff fixed point theorem.

4.2 DN versus NA

A major result of this paper is that DN creates unambiguously higher aggregate welfare than NA. To guarantee the existence of CE, we assume that η is absolutely continuous and has full support.

Theorem 3. DN creates higher aggregate welfare than NA.

Before proving the result we provide some intuition on why DN creates higher aggregate welfare than NA. Like NA, DN allows families with high valuations to enroll their children to their preferred schools by choosing the corresponding neighborhood. In addition, it provides more flexibility for families to enroll their children to schools outside of their neighborhoods when those have empty seats (i.e., ‘unclaimed’ by neighborhood families). It is immediate that all families prefer DN to NA in a simple case where CE neighborhood choices and/or prices are equal under both mechanisms. However, this
observation does not extend to the general case: when CE neighborhood prices are not equal under the two mechanisms, some families may prefer NA to DN. Despite this ambiguity in some families’ welfare across DN and NA, Theorem 3 tells that the aggregate welfare is always larger under the former mechanism. The proof uses the result that Walrasian equilibria of continuum assignment games maximize aggregate welfare (Gretsky et al., 1992). We outline the proof below.

When fixing school assignment probabilities, our model may be thought of as a continuum assignment game where families valuations for neighborhoods are their expected utilities from them. Consider an arbitrary CE of NA and DN. If families choose neighborhoods according to the CE of NA, but their expected utilities from choosing neighborhoods are calculated as if the other families choose neighborhoods according to DN and the school assignment mechanism is DN, then the corresponding aggregate welfare (in fact, the welfare of each family) would be larger than that under the CE of NA. This is true since under DN each family is guaranteed a school that she weakly prefers to her neighborhood school. Moreover, assuming that the expected utilities are as described above, families’ choosing neighborhoods according to DN instead of NA would further improve aggregate welfare. This is true since DN neighborhood choices constitute a Walrasian equilibrium of the corresponding continuum assignment game, and therefore maximize aggregate welfare. For the sake of completeness, we give the formal proof.

Proof. For $\phi \in \{DN, NA\}$, let (τ^ϕ, p^ϕ) be a CE of ϕ. Also, let $\tilde{V} := [0, 1]^{\lvert H \rvert}$ and $\tilde{\eta}^\phi$ be a measure on \tilde{V} given by

$$\tilde{\eta}^\phi(\tilde{U}) = \eta\left(v \in V : (u_h^\phi(h, \tau^\phi))_{h \in H} \in \tilde{U} \right),$$

for all measurable $\tilde{U} \subseteq \tilde{V}$. Since η has full support, so does $\tilde{\eta}^\phi$. Define a measure $\tilde{\tau}^\phi$.

8An example is provided in Appendix B.
on $\tilde{V} \times \tilde{H}$ by

$$\tilde{\tau}^\phi((\bar{u}, h) \in \tilde{V} \times \tilde{H} : \bar{u} \in \tilde{U}, h \in H') = \tau^\phi((v, h) \in V \times H : (u^\phi_v(h, \tau^\phi))_{h \in H} \in \tilde{U}, h \in H'),$$

for all measurable $\tilde{U} \subseteq \tilde{V}$ and $H' \subseteq H$. Then, $(\tilde{\tau}^\phi, p^\phi)$ is a Walrasian equilibrium of the non-atomic assignment game $\tilde{\eta}^\phi$. Hence, by Theorem 4 of Gretsky et al. (1992),

$$\tau^\phi = \arg \max_{\tau \in T} \int u^\phi_v(h, \tau^\phi)d\tau, \quad (5)$$

s.t. $\tau((v, h) \in V \times H : h = h') \leq q_{h'}$, for all $h' \in H$.

Then,

$$\int u^\phi_v(h, \tau^\phi_{DN})d\tau^{DN} \geq \int u^\phi_v(h, \tau^\phi_{NA})d\tau^{NA} \geq \int v(h, s_h)d\tau^{NA} = \int u^\phi_v(s, \tau^{NA})d\tau^{NA},$$

where the first inequality above follows from equation 5 for $\phi = DN$ and the second inequality follows from that each type is assigned to a school she weakly prefers to the neighborhood school under DN. The last property follows from $q_h \leq q_{s_h}$ for all $h \in H$ and from the description of DN.

In the next subsection we compare aggregate welfare between the two versions of the Deferred Acceptance mechanism.

4.3 DN versus DA

The welfare comparison across DN and DA is less straightforward. Generally, each mechanism can result in a higher aggregate welfare than the other one. We show that DN outperforms DA in two special case of our model.

Assumption 1. Suppose $V = \{v_\alpha\}_{\alpha \in [0,1]}$, $H = \{h_i\}_{i=1}^N$, $S = \{s_i\}_{i=1}^N$ and for almost all $\alpha \in [0,1]$,

$$\text{19}$$
• \(v_\alpha(h_i, s_m) \geq v_\alpha(h_j, s_n) \) for all \(h_i, h_j \in H, i \geq j \) and \(s_m, s_n \in S, m \geq n \),

• \(v_\alpha(h_N, s_N) = 0 \) and \(v_\alpha(h_i, s_m) - v_\alpha(h_j, s_n) \) is increasing in \(\alpha \) for all \(h_i, h_j \in H, i \geq j \) and \(s_m, s_n \in S, m \geq n \).

In words, Assumption 1 says that families, neighborhoods and schools are indexed, all families have a higher valuation for higher indexed neighborhoods and schools and these valuations have increasing differences in \((\alpha; i, j) \).\(^9\) The index of the family reflects the child’s ability, parent’s education level, family income or some combination of those. The index of a neighborhood or a school reflects its quality.

Assumption 2. Suppose \(H = \{h_i\}_{i=1}^N, S = \{s_i\}_{i=1}^N \), and there are constants \((e_i)_{i=1}^N \) such that for almost all \(v \in V \),

• \(v(h, s_m) \geq v(h, s_n) \) for all \(h \in H \) and \(s_m, s_n \in S, m \geq n \),

• \(v(h_i, s) - v(h_j, s) = e_i - e_j \geq 0 \) for all \(h_i, h_j \in H, i \geq j \) and \(s \in S \).

Thus, Assumption 2 relaxes increasing differences, but assumes that families have common and additively separable valuations for neighborhoods.

Theorem 4. Suppose either Assumption 1 or 2 holds. Then, \(DN \) creates higher aggregate welfare than \(DA \).

Proof. Appendix A.2. \(\square \)

It is important to note that Assumptions 1 and 2 are restrictive as they imply that families have common ordinal preferences over neighborhoods and schools. However,\(^9\) The assumptions of same ordinal preference rankings and increasing differences of valuations are also made by Xu (2019) and Avery and Pathak (2020). However, they assume that families only care about schools, while we allow valuations for neighborhoods, too. None of these papers provide welfare comparisons between the two version of the Deferred Acceptance mechanism.
as mentioned in Section 2, such a restrictive preference structure has been commonly imposed by the previous works on the topic to gain tractability. Our work too uses the assumption for tractability, and we do not provide more general conditions to give stronger welfare comparisons across DN and DA. Therefore, the superior welfare performance of DN compared to DA in Theorem 4, should be interpreted with care. In fact, we provide two counterexamples, where Assumption 1 and 2 fail, and DA outperforms DN in terms of aggregate welfare. The first example relaxes common valuations of neighborhoods and increasing differences of valuations.

Example 1. There are two neighborhoods $H = \{h_1, h_2\}$ and two schools $S = \{s_1, s_2\}$. Each neighborhood and school has a capacity 0.5. Economy η is supported at only two points v_1 and v_2, with

$$\eta(v \in V : v = v_1) = \eta(v \in V : v = v_2) = 0.5.$$

Table 1: Valuations

<table>
<thead>
<tr>
<th></th>
<th>(h_1, s_1)</th>
<th>(h_1, s_2)</th>
<th>(h_2, s_1)</th>
<th>(h_2, s_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>0</td>
<td>0.3</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>v_2</td>
<td>0.1</td>
<td>0</td>
<td>0.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

It is easy to verify that prices $p_{h_1}^\phi = 0$ and $p_{h_2}^\phi = 2$ support CE (τ^ϕ, p^ϕ) of $\phi \in \{DN, DA\}$, satisfying

$$\tau^\phi ((v, h) \in V \times \bar{H} : v = v_i, h = h_i) = \eta(v \in V : v = v_i) \text{ for all } i \in \{1, 2\}.$$

Under DN, type v_2 receives a higher priority at s_2 and therefore she is assigned there with probability one. Under DA, each type has an equal probability of being assigned to s_2. Expected utilities are

$$u_{v_1}^{DN}(h_1, \tau^{DN}) = 0 \quad u_{v_1}^{DA}(h_1, \tau^{DA}) = 0.15$$

$$u_{v_2}^{DN}(h_2, \tau^{DN}) = 0.6 \quad u_{v_2}^{DA}(h_2, \tau^{DA}) = 0.55.$$
Therefore,

\[
\int u_v^D(h, \tau^D) d\tau^D = \frac{1}{2} \times u_{v_1}^D(h_1, \tau^D) + \frac{1}{2} \times u_{v_2}^D(h_2, \tau^D) = 0.3
\]

\[
< 0.35 = \frac{1}{2} \times u_{v_1}^A(h_1, \tau^A) + \frac{1}{2} \times u_{v_2}^A(h_2, \tau^A) = \int u_v^A(h, \tau^A) d\tau^A.
\]

Our second example maintains the assumption of common and additively separable valuation over neighborhoods, but relaxes the assumption of identical ordinal preferences over schools.

Example 2. There are three neighborhoods \(H = \{h_1, h_2, h_3\} \) and three schools \(S = \{s_1, s_2, s_3\} \). Capacities are \(q_{h_1} = q_{h_2} = 0.6, q_{h_3} = 0.2 \) and \(q_{s_2} = q_{s_3} = 0.3 \). Economy \(\eta \) is supported at only three points \(v_1, v_2 \) and \(v_3 \), with

\[
\eta(v \in V : v = v_1) = 0.6, \eta(v \in V : v = v_2) = \eta(v \in V : v = v_3) = 0.2.
\]

We assume that families only care about schools. Formally, \(v_i(h_j, s) = v_i(h_k, s) \) for all \(i, j, k \in \{1, 2, 3\} \) and \(s \in S \). Thus, a type can be described by its valuation for schools. Valuations are given in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_1)</td>
<td>0</td>
<td>1</td>
<td>0.9</td>
</tr>
<tr>
<td>(v_2)</td>
<td>0</td>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>(v_3)</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Table 2: Valuations

We first compute aggregate welfare under \(D^N \). We prove that prices \(p_{h_1}^{DN} = 0, p_{h_2}^{DN} = 0.7 \), and \(p_{h_3}^{DN} = 0.6 \) supports CE neighborhood choices

\[
\tau^{DN}(v, h) \in V \times \bar{H} : v = v_i, h = h_i = \eta(v \in V : v = v_i) \text{ for all } i \in \{1, 2, 3\}.
\]
First, let us show optimality of type v_1 families’ neighborhood choices at (τ^{DN}, p^{DN}). Since families receive higher priorities at neighborhood schools, almost all v_2 type families are assigned to s_2 and almost all v_3 type families are assigned to s_3. The remaining 0.2 cumulative capacity at schools s_2 and s_3 are assigned to highest ranked families of type v_1. Thus, the probability that v_1 is assigned to either s_2 or s_3 is equal to $\frac{1}{3}$. Therefore,

$$u^{DN}_{v_1}(h_1, \tau^{DN}) - p^{DN}_{h_1} \geq \frac{1}{3} \times 0.9 = u^{DN}_{v_2}(h_2, \tau^{DN}) - p^{DN}_{h_2} = u^{DN}_{v_1}(h_3, \tau^{DN}) - p^{DN}_{h_3}.$$

Now consider a type v_2 family. If a v_2 family chooses neighborhood h_1 or h_3, she is assigned to s_2 only if she has one of the 0.1 highest lottery numbers among 0.6 mass of type v_1 families. The probability of this event is $\frac{1}{6}$. Therefore,

$$u^{DN}_{v_2}(h_2, \tau^{DN}) - p^{DN}_{h_2} = 0.9 - 0.7 > \frac{1}{6} \times 0.9 = u^{DN}_{v_2}(h_1, \tau^{DN}) - p^{DN}_{h_1} = u^{DN}_{v_2}(h_3, \tau^{DN}) - p^{DN}_{h_3}.$$

Finally, consider a type v_3 family. Conditional on being assigned to h_1 or h_2, type v_3 is assigned to s_3 only she has one of the highest 0.1 highest lottery numbers among mass 0.5 type v_1 families who do not have a high enough lottery number to be assigned to s_2. The conditional lottery numbers’ distribution of families not assigned to s_2 is uniform in $[0, \frac{5}{6}]$, and the probability that v_3 is assigned to s_3 is $\frac{1}{6} + \frac{5}{6} \times \frac{1}{5} = \frac{1}{3}$. Therefore,

$$u^{DN}_{v_3}(h_2, \tau^{DN}) - p^{DN}_{h_3} = 0.9 - 0.6 = \frac{1}{3} \times 0.9 = u^{DN}_{v_3}(h_1, \tau^{DN}) - p^{DN}_{h_1} = u^{DN}_{v_3}(h_2, \tau^{DN}) - p^{DN}_{h_2}.$$

Aggregate welfare under DN is

$$\int u^{DN}_v(h, \tau^{DN})d\tau^{DN} = 0.1 \times 1 + 0.1 \times 0.9 + 0.2 \times 0.9 + 0.2 \times 0.9 = 0.550.$$

Now consider DA. Since families only care about schools, any neighborhood choice $\tau^{DA} \in \mathcal{T}$ is supported as a CE with prices $p^{DA}_{h_1} = p^{DA}_{h_2} = p^{DA}_{h_3}$. Then, a mass 0.15 of type v_1 families who have valuation 1 for s_2 are assigned to the school. The remaining 0.15 capacity at s_2 is filled with families who have valuation 0.9 for s_2. The entire
capacity of school s_3 is filled with families who have valuation 0.9 for s_3. Thus, aggregate welfare under DA is

$$
\int u^D_A(h, \tau^D_A)d\tau^D_A = 0.15 \times 1 + 0.15 \times 0.9 + 0.3 \times 0.9 = 0.555.
$$

The examples reveal the ambiguity of aggregate welfare comparisons across DN and DA. Although restrictive, Assumptions 1 and 2 are common in the literature. Therefore, our results that DN creates higher welfare than DA in natural special cases is a potential justification of the fact that school district typically grant higher priorities to neighborhood students.

5 Budget Constraints: Distributional Consequences of School Choice

In this section a family’s type is her valuations $v \in [0, 1]|H| \times |S| := V$ for neighborhoods and schools and her budget $b \in [0, 1]$, which denotes the maximum amount she can pay for a neighborhood. The economy is described by a probability measure η on $V \times [0, 1]$. Neighborhood choices τ is a probability measure on $V \times [0, 1] \times \bar{H}$ satisfying $\tau(U \times I \times \bar{H}) = \eta(U \times I)$ for all measurable $U \times I \subseteq V \times [0, 1]$.

Definition 3. For neighborhood choices τ and price vector $p \in \mathbb{R}_{+}^{|H|}$, we say a pair (τ, p) is a **competitive equilibrium (CE)** of mechanism ϕ if it satisfies the following conditions:

1. $\tau((v, b, h) \in V \times [0, 1] \times \bar{H} : h = \arg \max_{h' \in H_b} u^\phi vb(h', \tau) - p_{h'}) = 1,$
 where $p_0 := 0$ and $H_b := \{h \in \bar{H} : p_h \leq b\},$

10We implicitly assume that types v_2 and v_3 apply to s_1 before s_3 and s_2, respectively. This is without loss of generality, as alternatively we could slightly increase valuations at s_1 for all families and adjust prices accordingly.
2. \(\tau((v, b, h) \in V \times [0, 1] \times \bar{H} : h = h') \leq q_{h'}, \forall h' \in H. \)

3. \(\tau((v, b, h) \in V \times [0, 1] \times \bar{H} : h = h') < q_{h'} \Rightarrow p_{h'} = 0. \)

Throughout this section we assume that \(\sum_{h \in H} q_h \geq 1. \) This is without loss of generality, since otherwise there will be no zero-priced neighborhood in equilibrium, making the analysis for lowest-income family welfare trivial. We restrict attention to economies that admit CE.\(^{11}\)

Definition 4. Let \((\tau^\phi, p^\phi)\) be a CE of \(\phi \in \{DN, DA, NA\}\). We say \(h\) is an **underdemanded neighborhood** if \(p^\phi_h = 0\). Similarly, for \(\phi \in \{DN, DA\}\), we say \(s\) is an **underdemanded school** if \(c^\phi_s = 0\).

Our next result gives a sufficient condition for lowest-income families preferring DN and DA to NA.

Theorem 5. Let \((\tau^\phi, p^\phi)\) be CE of \(\phi \in \{DN, DA, NA\}\). Also, let \(H_\phi^-\) and \(S_\phi^-\) be the set of underdemanded neighborhoods and schools at \((\tau^\phi, p^\phi)\), respectively.

1. If underdemanded neighborhoods under NA are also underdemanded under DN, then lowest-income families prefer DN to NA. Formally, if \(H_{NA}^- \subseteq H_{DN}^-\), then there is a \(\bar{b} > 0\) such that for any measurable \(U \times I \subseteq V \times [0, \bar{b}]\),
\[
\int_{U \times I} [u_{vb}^{DN}(h, \tau^{DN}) - p_h^{DN}] d\tau^{DN} \geq \int_{U \times I} [u_{vb}^{NA}(h, \tau^{NA}) - p_h^{NA}] d\tau^{NA}.
\]

2. If underdemanded neighborhoods under NA are also underdemanded under DA, and they have underdemanded schools, then lowest-income families prefer DA to NA. Formally, if \(H_{NA}^- \subseteq H_{DA}^-\) and \(\{s_h \in S : h \in H_{NA}^-\} \subseteq S_{DA}^-\), then there is a \(\bar{b} > 0\) such that for any measurable \(U \times I \subseteq V \times [0, \bar{b}]\),
\[
\int_{U \times I} [u_{vb}^{DA}(h, \tau^{DA}) - p_h^{DA}] d\tau^{DA} \geq \int_{U \times I} [u_{vb}^{NA}(h, \tau^{NA}) - p_h^{NA}] d\tau^{NA}.
\]

\(^{11}\)In general, existence of CE is not guaranteed under any of the studied mechanisms. This is an immediate consequence of an analogous result for Walrasian equilibria of assignment games with budget constraints (e.g., see van der Laan, Talman, and Yang (2018)).
Proof. First, we prove point 1. Let $\bar{b} := \min_{h \in H \setminus H_{NA}} p_h^{NA}/2$. Then, by Definition 3,

$$\tau^{NA}\left((v, b, h) \in V \times [0, 1] \times \bar{H} : b \in [0, \bar{b}], h \in H_{NA}^{\bar{h}}\right) = \eta\left((v, b) \in V \times [0, 1] : b \in [0, \bar{b}]\right).$$ (6)

In words, equations 6 says that almost all families with budgets in $[0, \bar{b}]$ choose a neighborhood in $H_{NA}^{\bar{h}}$ under τ^{NA}. Consider an arbitrary measurable $U \times I \subseteq V \times [0, \bar{b}]$. Then,

$$\int_{U \times I} \left[u^{DN}_{vb}(h, \tau^{DN}) - p_h^{DN}\right] d\tau^{DN} \geq \int_{U \times I} \left[u^{DN}_{vb}(h, \tau^{DN}) - p_h^{DN}\right] d\tau^{NA}$$

$$= \int_{U \times I} u^{DN}_{vb}(h, \tau^{DN}) d\tau^{NA} \geq \int_{U \times I} v(h, s_h) d\tau^{NA}$$

$$= \int_{U \times I} u^{NA}_{vb}(h, \tau^{NA}) d\tau^{NA} = \int_{U \times I} \left[u^{NA}_{vb}(h, \tau^{NA}) - p_h^{NA}\right] d\tau^{NA}. \quad (7)$$

The first inequality in equation 7 follows from equation 6 and the optimality of neighborhood choices. The first equality follows from that $H_{NA}^{\bar{h}} \subseteq H_{DN}^{\bar{h}}$. The second inequality follows from that under DN each family is guaranteed a weakly better school than the neighborhood school. The last equality again follows from equation 6.

We now prove point 2. Let \bar{b} be as before and consider an arbitrary measurable $U \times I \subseteq V \times [0, \bar{b}]$. Then,

$$\int_{U \times I} \left[u^{DA}_{vb}(h, \tau^{DA}) - p_h^{DA}\right] d\tau^{DA} \geq \int_{U \times I} \left[u^{DA}_{vb}(h, \tau^{DA}) - p_h^{DA}\right] d\tau^{NA}$$

$$= \int_{U \times I} u^{DA}_{vb}(h, \tau^{DA}) d\tau^{NA} \geq \int_{U \times I} v(h, s_h) d\tau^{DA}$$

$$= \int_{U \times I} u^{NA}_{vb}(h, \tau^{NA}) d\tau^{NA} = \int_{U \times I} \left[u^{NA}_{vb}(h, \tau^{NA}) - p_h^{NA}\right] d\tau^{NA}. \quad (8)$$

The second inequality in equation 8 follows from that $\{s_h \in S : h \in H_{NA}^{\bar{h}}\} \subseteq S^{DA}$. The condition along with equation 6 implies that schools at neighborhood chosen by types in $U \times I$ are underdemanded. Thus, under DA each of these families is guaranteed a weakly better school than a the neighborhood school. The arguments for other steps in equation 8 are as in point 1. \qed
In other words, the conditions in in Theorem 5 say the following. First, they say that underdemanded neighborhoods remain underdemanded once we switch from a CE of NA to a CE of DN or DA. Second, they say that schools in underdemanded neighborhoods are underdemanded. The conditions are intuitive, and more importantly, later in this section we show that they are satisfied for some natural special cases (Corollaries 1 and 2).

Conditions in Theorem 5 are sufficient, but not necessary. That is, there are economies that do not satisfy the conditions, but where all lowest-income families prefer DN or DA to NA. However, for any such economy, we can find another economy that is arbitrarily close to the original one, such that either the conditions in Theorem 5 hold, or a positive measure of lowest-income families prefer NA to DN or DA. Thus, in a sense, the conditions in Theorem 5 are necessary if we also require ‘robustness’ of lowest-income family welfare comparisons to small perturbations.

For an economy η', we use H^ϕ_- and S^ϕ_- to denote the set of underdemanded neighborhoods and schools at a CE of ϕ.

Theorem 6. Consider an arbitrary economy η and $\epsilon > 0$.

1. There is an economy η' satisfying

$$\|\eta - \eta'\|_2 < \epsilon$$

(where $\|\cdot\|_2$ denotes the L^2 norm), such that $H^\eta_\text{NA} \subseteq H^\eta_\text{DN}$, or for some $U \subseteq V$ with $\eta'(U \times \{0\}) > 0$,

$$\int_{U \times I} [u^\eta_{vb}(h, \tau) - p^\eta_h] d\tau \geq \int_{U \times I} [u^\eta_{vb}(h, \tau) - p^\eta_h] d\tau .$$

2. There is an economy η' satisfying

$$\|\eta - \eta'\|_2 < \epsilon,$$
such that $H'_{NA} \subseteq H'_{DA}$ and $\{ s_h \in S : h \in H'_{NA} \} \subseteq S'_{DA}$, or for some $U \subseteq V$ with $\eta'(U \times \{0\}) > 0$,

$$\int_{U \times I} \left[u_{vb}^{NA}(h, \tau^{NA}) - p_h^{NA} \right] d\tau^{NA} \geq \int_{U \times I} \left[u_{vb}^{DA}(h, \tau^{DA}) - p_h^{DA} \right] d\tau^{DA}.$$

Proof. Appendix A.3.

We finish this section by showing that the conditions is Theorem 5 are satisfied for some special cases. The first case assumes common ordinal preference rankings over neighborhoods and schools.

Assumption 3. Suppose $H = \{ h_i \}_{i=1}^N, S = \{ s_i \}_{i=1}^N$, and for almost all $v \in V$,

- $v(h, s_m) \geq v(h, s_n)$ for all $h \in H$ and $s_m, s_n \in S, m \geq n$,
- $v(h_i, s) \geq v(h_j, s)$ for all $h_i, h_j \in H, i \geq j$ and $s \in S$.

Note that Assumption 3 is weaker than Assumptions 1 and 2.

Corollary 1. Suppose Assumption 3 is satisfied. Then, there is a $\bar{b} > 0$ such that for any measurable $U \times I \subseteq V \times [0, \bar{b}]$,

$$\int_{U \times I} \left[u_{vb}^{DN}(h, \tau^{DN}) - p_h^{DN} \right] d\tau^{DN} \geq \int_{U \times I} \left[u_{vb}^{NA}(h, \tau^{NA}) - p_h^{NA} \right] d\tau^{NA},$$

and

$$\int_{U \times I} \left[u_{vb}^{DA}(h, \tau^{DA}) - p_h^{DA} \right] d\tau^{DA} \geq \int_{U \times I} \left[u_{vb}^{NA}(h, \tau^{NA}) - p_h^{NA} \right] d\tau^{NA}.$$

The result is intuitive: with a common ordinal preferences rankings over neighborhoods and schools, the least preferred neighborhoods and schools are the ones the underdemanded ones for all CE and school assignment mechanisms. Thus, the conditions Theorem 5 are satisfied.
Although widely applied for tractability (e.g., Abdulkadiroğlu, Che, and Yasuda (2011); Avery and Pathak (2020); Xu (2019)), the assumption of common ordinal preference rankings is restrictive. Our next result (Corollary 2) provides another condition that guarantees that families prefer DA over NA. We say an economy is uniform if each valuation profile is equally likely. Formally, \(\eta \) is a uniform economy if for each measurable \(U \times I \subseteq V \times [0,1] \) and \(U' \times I \subseteq V \times [0,1] \), \(U \) and \(U' \) have the same Lebesgue measure only if \(\eta(U \times I) = \eta(U' \times I) \).

Suppose \(\sum_{h \in H} q_h = 1 \) and \(q_{\bar{h}} \geq q_h \) for all \(\bar{h} \in \arg \max_{h \in H} q_h \). In other words, the first condition says that the total capacity at neighborhoods equals to the total mass of families, and the last condition says that largest neighborhoods have the largest schools. We show that the uniform economy satisfies the second part of conditions in Theorem 5 for this special case.

Corollary 2. Let \(\eta \) be a uniform economy. Then, there is a \(\bar{b} > 0 \) such that for any measurable \(U \times I \subseteq V \times [0, \bar{b}] \),

\[
\int_{U \times I} \left[u^{DA}_{eb}(h, \tau^{DA}) - p^{DA}_h \right] d\tau^{DA} \geq \int_{U \times I} \left[u^{NA}_{eb}(h, \tau^{NA}) - p^{NA}_h \right] d\tau^{NA}.
\]

Proof. Appendix A.5. \(\square \)

The result follows from that in the uniform economy the underdemanded neighborhoods and schools are the ones with the largest capacities. Although the result may seem intuitive, proving it formally requires some effort.

The uniform economy framework is commonly applied in matching theory literature to obtain analytical results without strong restrictions on preferences and priorities (Abdulkadiroğlu, Che, Pathak, Roth, and Tercieux, 2020a; Che and Tercieux, 2017; Grigoryan, 2020). The uniform economy can be thought of as an ‘average’ economy. Hence, the result may be interpreted as ‘on average’ lowest-income income families preferring DA over NA.
6 Continuum Economy as a Limit of Discrete Economies

This section establishes existence of approximate competitive equilibria in large discrete economies.

6.1 Discrete Model

There is a finite set of families F with a single child an equal number of neighborhoods H and schools S. There is a unique school in neighborhood $h \in H$, which we denote by $s_h \in S$. Each neighborhood h has capacity $q_h \in \mathbb{N}$ which denotes the maximum number of families it can accommodate. Similarly, each school s has a capacity $q_s \in \mathbb{N}$, which denotes the maximum number of families that can enrol at the school. Each family $f \in F$ has a valuation $v_f(h, s) \in [0, 1]$ for residing in neighborhood h and enrolling at school s. Valuations of all families are commonly known. Families’ valuations induce preference rankings over schools. The preference ranking of family f, conditional on residing in neighborhood h, satisfies

$$v_f(h, s) > v_f(h, s') \Rightarrow s \succ_f s'.$$

When $v_f(h, s) = v_f(h, s')$, ties are broken arbitrarily.

Let $\bar{H} := H \cup \{0\}$. Neighborhood choices of families is a mapping $\sigma : F \to \bar{H}$.

Family’s expected utilities of choosing a certain neighborhood depend on other families’ neighborhood choices and the school assignment mechanism, as they jointly determine the family’s school assignment probabilities. For a school assignment mechanism ϕ, let $\lambda^\phi_f(s, \sigma) \in [0, 1]$ denote the probability that family f is assigned to school s when she chooses neighborhood h and other families’ choose neighborhoods according σ. Later in this section we study different school assignment mechanisms and how this probabilities are determined for each of them. Before that, we define competitive equilibrium in the discrete model. Given the school assignment probabilities and neighborhood price
vector $p \in [0, 1]^{|H|}$, the expected utility of family f choosing neighborhood h is equal to

$$u^\phi_f(h, \sigma) - p_h.$$

where $u^\phi_f(h, \sigma) := \sum_{s \in S} \lambda^\phi_{fs}(h, \sigma)v_f(h, s)$. Also, let $u^\phi_f(0, \sigma) := 0$. The housing market is competitive: families choose neighborhoods to maximize expected utilities, given other families neighborhood choices and the market clearing neighborhood prices.

Definition 5. For a neighborhood choices σ and price vector $p \in \mathbb{R}^{|H|}_+$, we say a pair (σ, p) is a competitive equilibrium (CE) of ϕ if it satisfies the following conditions:

1. $u^\phi_f(\sigma(f), \sigma) - p_{\sigma(f)} = \arg \max_{h \in \bar{H}} u^\phi_f(h, \sigma) - p_h, \forall f \in F$, where $p_0 := 0$,
2. $|\sigma^{-1}(h)| \leq q_h, \forall h \in H$,
3. $|\sigma^{-1}(h)| < q_h \Rightarrow p_h = 0$.

We now discuss the discrete analogs of school assignment mechanisms of previous sections.

Neighborhood Assignment.

Under neighborhood assignment (NA), families are assigned to the neighborhood schools. Therefore, school assignment probabilities are trivial:

$$\lambda^\text{NA}_{fs}(h, \sigma) = \begin{cases}
1 & \text{if } s = s_h, \\
0 & \text{otherwise}
\end{cases}$$

Deferred Acceptance.

As in the continuum model, we study two versions of DA, which differ on how schools’ priority ranking is determined.

Deferred Acceptance without Neighborhood Priority (DA).
School assignment under DA is determined based on families’ preferences and lottery number. Preferences are induced by neighborhood choices through equation 9. A lottery number for each family is uniformly and independently drawn from the unit interval. All schools rank families according to their lottery numbers, i.e., a higher lottery numbers denotes a higher rank. The assignment is determined through the following algorithm by Gale and Shapley (1962): until there are no more rejections,

- each family \(f \) with \(\sigma(f) \neq 0 \) applies to her most preferred school that has not rejected her,
- each school tentatively accepts up to \(q_s \) of all its highest ranked applicants and rejects the rest.

Deferred Acceptance with Neighborhood Priority (DN).

Under DN, school assignment is determined based on families’ preferences, lottery number and priorities. Preferences and lottery numbers are decided as under DA. Families receive priority 1 at neighborhood schools and priority 0 at non-neighborhood ones. Schools rank families according to their lottery numbers plus the priority. Again, DN assignment is determined by the Gale and Shapley (1962) algorithm.

6.2 (Non)Existence of CE in the Discrete Model

Under NA, the existence of CE follows from Shapley and Shubik (1971). In contrast, assignment externalities may preclude the existence of CE under DN and DA. The example below demonstrates the nonexistence result for DN. The one for DA is in Appendix B.

Example 3. Suppose there are two families \(F = \{ f_1, f_2 \} \), two neighborhoods \(H = \)
\{h_1, h_2\} and two schools \(S = \{s_1, s_2\}\). Each neighborhood and school has a unit capacity. Families’ valuations are shown in Table 3.

Suppose, for the sake of contradiction, that there is a CE \((\sigma, p)\) of DN. Consider cases:

(i) Suppose \(\sigma(f_1) = h_1\) and \(\sigma(f_2) = h_2\). Then, \(f_1\) ’s utility is 0, as she is rejected by \(s_2\), where \(f_2\) has a higher priority. If \(f_1\) chooses \(h_2\) instead of \(h_1\), her utility is \(\frac{1}{2} \times 0.1 = 0.05\) as she has \(\frac{1}{2}\) chance of being assigned to \(s_2\). Thus, \(\sigma(f_1) = h_1\) implies \(p_{h_2} - p_{h_1} \geq 0.05\). Also, \(f_2\) ’s utility is 0.1 as she is guaranteed being assigned to \(s_2\). If \(f_2\) chooses \(h_1\), she has a \(\frac{1}{2}\) chance of being assigned to \(s_1\) and \(\frac{1}{2}\) chance of being assigned to \(s_2\), thus her utility is \(\frac{1}{2} \times 0.1 + \frac{1}{2} \times 0.2 = 0.15\). Thus, \(\sigma(f_2) = h_2\) implies \(p_{h_2} - p_{h_1} \leq -0.05\), a contradiction.

(ii) Now suppose \(\sigma(f_1) = h_2\) and \(\sigma(f_2) = h_1\). Then, \(f_1\) ’s utility is 0.1. If \(f_1\) chooses \(h_1\) instead of \(h_2\), her utility is \(\frac{1}{2} \times 0.3 = 0.15\). Thus, \(\sigma(f_1) = h_2\) implies \(p_{h_2} - p_{h_1} \leq -0.05\). Also, \(f_2\) ’s utility is 0.1 as she is rejected by \(s_2\). If \(f_2\) chooses \(h_2\) instead of \(h_1\), her utility is \(\frac{1}{2} \times 0.1 = 0.05\). Thus, \(\sigma(f_2) = h_1\) implies \(p_{h_2} - p_{h_1} \geq 0.05\), a contradiction.

As the proof demonstrates, the nonexistence result is due to assignment externalities. A family’s expected utility for different neighborhood choices depend on other families’ neighborhood choices through the latter’s effect on school assignment probabilities. In contrast, as shown in Section 3, competitive equilibria always exist in the continuum model. In Section 6.3, we show that continuum economies are arbitrarily good approximations of finite discrete economies when the number of families is sufficiently large. In particular, this implies that approximate CE exist in sufficiently large di-
crete economies, and welfare comparisons for the continuum model carry over to the
discrete one.

6.3 Existence of Approximate CE in Large Markets

Let η be an absolutely continuous and fully supported probability measure on $V := [0, 1]^{H \times S}$. For a fixed $k \in \mathbb{N}$ let $\{v_f\}_{f \in F}, |F| = k$, be k independent draws from V according to η. Suppose neighborhood $h \in H$ has a capacity $\lfloor q_h k \rfloor$ and each school $s \in S$ has a capacity $\lfloor q_s k \rfloor$.

Definition 6. For an $\epsilon > 0$, neighborhood choices $\sigma : F \to \bar{H}$ and a price vector $p \in \mathbb{R}_+^{H}$, we say a pair (σ, p) is an ϵ-competitive equilibrium (ϵ-CE) of ϕ if it satisfies the following conditions:

1. $u_\phi^f(\sigma(f), \sigma) - p_{\sigma(f)} + \epsilon \geq \max \{ u_\phi^h(h, \sigma) - p_h, 0 \}, \forall f \in F, h \in H,$
2. $|\sigma^{-1}(h)| \leq (q_h + \epsilon)k, \forall h \in H,$
3. $|\sigma^{-1}(h)| < (q_h - \epsilon)k \Rightarrow p_h = 0.$

Let (τ^ϕ, p^ϕ) denote a CE of a continuum economy η for $\phi \in \{DN, DA, NA\}$. For each size k discrete economy $(v_f)_{f \in F}$, consider neighborhood choices $\sigma_k : F \to \bar{H}$ satisfying

$$\sigma_k(f) = \arg \max_{h \in H} u_\phi^f(h, \tau^\phi) - p_h^\phi.$$

Theorem 7. Let (τ^ϕ, p^ϕ) be a competitive equilibrium of the continuum economy η. Then for any $\epsilon > 0$ the probability that (σ_k, p) is an ϵ-competitive equilibrium of the discrete economy converges to one as k goes to infinity.

Proof. Appendix A.6.

In other words, Theorem 7 says that in a sufficiently large market approximate equilibria exist with a probability that is arbitrarily close to one.
7 Simulations

We compare school assignment mechanisms in a simulated environment 1000 students, 10 neighborhoods and 10 schools. The valuation of family \(f \) for the joint assignment to neighborhood \(h \) and school \(s \) is equal to

\[
v_f(h, s) = \alpha U_h + \beta U_s + \gamma 1[s = s_h] + \epsilon_{fhs},
\]

where

- \(U_h \) is the common valuation for neighborhood \(h \),
- \(U_s \) is the common valuation for school \(s \),
- \(\epsilon_{fhs} \) is the idiosyncratic valuation of family \(f \) for the joint assignment to \(h \) and \(s \),
- \(\alpha, \beta \) and \(\gamma \) are parameters.

Values of \(U_h, U_s \) and \(\epsilon_{fhs} \) are iid uniform draws from the unit interval. The capacity of school \(s \) is equal to \(100 + \kappa_s \), where \(\kappa_s \) is a random draw from the set \(\{1, 2, \ldots, 100/\delta\} \).

Thus, a larger value of \(\delta \) means a smaller variance in schools’ capacities. We report simulations results for the following parameters: \(\alpha = 0.5, \beta \in \{0, 0.5, 1\}, \gamma \in \{0, 0.1\} \) and \(\delta \in \{1, 2, 4\} \).

As shown in Table 4, DN on average creates 5.85\% and 3.91\% higher aggregate welfare than DA and NA, respectively.

The welfare of lowest-income families is computed by assuming that 10 out of 1000 individuals have zero budgets and the remaining ones have infinite budgets.\(^{12}\) Table 5 shows that DN and DA create larger welfare for lowest-income families compared to NA. The numbers are 5.57\% and 5.07\%, respectively.

\(^{12}\)We restrict attention to this simple case for tractability: in general, as discussed in Section 5, CE may not even exist.
<table>
<thead>
<tr>
<th>β (1)</th>
<th>γ (1)</th>
<th>δ (2)</th>
<th>DN (3)</th>
<th>DA (4)</th>
<th>NA (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.388209</td>
<td>1.391641</td>
<td>1.222476</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.388250</td>
<td>1.391505</td>
<td>1.222476</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.387638</td>
<td>1.391006</td>
<td>1.222476</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1.409578</td>
<td>1.410964</td>
<td>1.319963</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.409358</td>
<td>1.410810</td>
<td>1.319963</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.409044</td>
<td>1.411370</td>
<td>1.319963</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td>1.596006</td>
<td>1.588918</td>
<td>1.505715</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.557116</td>
<td>1.543241</td>
<td>1.505715</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.546262</td>
<td>1.508974</td>
<td>1.505715</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1.649186</td>
<td>1.606840</td>
<td>1.606008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.626071</td>
<td>1.569385</td>
<td>1.606008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.618280</td>
<td>1.538739</td>
<td>1.606008</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.932153</td>
<td>1.802888</td>
<td>1.889623</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.905361</td>
<td>1.692288</td>
<td>1.889623</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.895176</td>
<td>1.629959</td>
<td>1.889623</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>2.009207</td>
<td>1.816189</td>
<td>1.989451</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.996694</td>
<td>1.706925</td>
<td>1.989451</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.993711</td>
<td>1.662322</td>
<td>1.989451</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>1.650961</td>
<td>1.559665</td>
<td>1.588873</td>
</tr>
</tbody>
</table>

Table 4: Aggregate Welfare, $\alpha = 0.5$
Table 5: Welfare of the Lowest-income Families, $\alpha = 0.5$

<table>
<thead>
<tr>
<th>β (1)</th>
<th>γ (1)</th>
<th>δ (2)</th>
<th>DN (3)</th>
<th>DA (4)</th>
<th>NA (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.328557</td>
<td>1.369096</td>
<td>1.172240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.345827</td>
<td>1.370518</td>
<td>1.172240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.366078</td>
<td>1.374113</td>
<td>1.172240</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1.388381</td>
<td>1.385296</td>
<td>1.301511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.380179</td>
<td>1.401007</td>
<td>1.301511</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.370772</td>
<td>1.375569</td>
<td>1.301511</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td>1.435800</td>
<td>1.513695</td>
<td>1.3271</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.394399</td>
<td>1.406775</td>
<td>1.3271</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.399665</td>
<td>1.378162</td>
<td>1.3271</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1.513536</td>
<td>1.521094</td>
<td>1.436764</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.469584</td>
<td>1.502085</td>
<td>1.436764</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.455039</td>
<td>1.473813</td>
<td>1.436764</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.697595</td>
<td>1.659152</td>
<td>1.574231</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.597895</td>
<td>1.577859</td>
<td>1.574231</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.596672</td>
<td>1.587154</td>
<td>1.574231</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1.727476</td>
<td>1.675281</td>
<td>1.670648</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.708616</td>
<td>1.601244</td>
<td>1.670648</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1.687666</td>
<td>1.571552</td>
<td>1.670648</td>
</tr>
</tbody>
</table>

Average | 1.492430 | 1.485748 | 1.413753
8 Discussion

This paper establishes the likely superior welfare and distributional performance of the Deferred Acceptance mechanism compared to neighborhood assignment. The results potentially justify the mechanisms’ widespread application for school assignment.

School choice programs may take diverse forms, including open enrollment, expansion of magnet or charter schools, private schools and voucher programs. Hence, our findings should not be interpreted as arguments for school choice programs in general, but arguments for open enrollment, more specifically, through the Deferred Acceptance mechanism. Counterarguments against (and arguments for) other school choice programs are numerous. For example, Epple and Romano (2003) show that voucher programs may lead to higher ability stratification (at schools) compared to neighborhood assignment, which, in turn, leads to more stratification compared to open enrollment. This, as the authors describe it as another example of the truism that “all choice programs are not alike”. A different argument has been made against charter schools by Zheng (2019). She shows that opening a charter school may hurt low-income families through its effect on neighborhood prices. Other papers provide arguments against open enrollment through some alternative school assignment mechanism. For example, the well-studied Boston mechanism has been criticized on the ground that it is not strategyproof, namely, families have incentives to ‘game the system’ by misreporting preferences to obtain better choices (Abdulkadiroğlu and Sönmez, 2003). Moreover, Boston mechanism may exacerbate inequalities as low-income families might be disproportionately hurt if they are worse at ‘gaming the system’ (Pathak and Sönmez, 2008) or if they have worse outside options (Calsamiglia et al., 2015; Neilson, Akbarpour, Kapor, van Dijk, and Zimmerman, 2020).

It is worth noting that in our work we do not assume peer effects, i.e., families only care about their own neighborhood and school assignments. Although empirical evidence
on peer effects is not fully conclusive,13 they are often assumed in the context of economics of education. However, these models typically study a simple framework with unidimensional family types and same (ordinal) preferences (e.g., Calsamigilia et al. (2015), Barseghyan et al. (2013) and Avery and Pathak (2020)). In contrast, peer effects are commonly assumed away in two-sided matching/school choice problems with rich (heterogeneous) preferences (Abdulkadiroğlu and Sönmez, 2003; Gale and Shapley, 1962). Nevertheless, assuming away peer preferences in our model is not without loss of generality. For example, Barseghyan et al. (2013) and Avery and Pathak (2020) show that neighborhood assignment may result in higher aggregate or lowest-income family welfare, respectively, compared to open enrollment.14 Despite these finding, and since our simulations reveal relatively large differences in the mechanisms’ performances, our results are likely to hold in the presence of moderate degree of peer preferences.

Finally, our work also abstracts away from some other important arguments on (both in favor or against) school choice in general, and open enrollment in particular. For example, the work does not consider schools’ incentives to improve education quality, whereas proponents consider it as a major argument in favor of school choice. They argue that parental choice enhances school quality through competitive pressures (Chubb and Moe, 1990; Friedman, 1962; Hoxby, 2003). Our work also ignores the possibility of sorting on dimensions other than income (O’Neil, 1996; Smith, 1995). For example, when families exhibit same-race preferences, parental choice may exacerbate racial segregation, which is another major concern in public school choice.

Despite the limitations above, our results arguably provide a rationale for using the Deferred Acceptance mechanism, either with or without neighborhood priorities, as an

13Several studies establish little or no direct causal effects of peer characteristics on a student’s academic outcomes (Abdulkadiroğlu, Angrist, and Pathak, 2014; Angrist and Lang, 2004; Vigdor and Nechyba, 2007), while others find moderate or substantial peer effects (Carrell, Fullerton, and West, 2009; Lavy, Paserman, and Schlosser, 2008; Sacerdote, 2001).

14The latter also assumes that there are multiple school districts, or endogenously prices outside options.
alternative to neighborhood assignment. Additionally, the work develops a theoretical framework that can be used for future research and potential extensions which would address the limitations.

References

CELEBI, O. AND J. P. FLYNN (2021): “Priority Design in Centralized Matching

Che, Y., J. Kim, and F. Kojima (2019): “Stable Matching in Large Economies,”
Econometrica, 87, 65–110.

Friedman, M. (1962): “Capitalism and Freedom: With the Assistance of Rose D.
Friedman,” University of Chicago Press.

A Omitted Proofs

A.1 Proof of Theorem 2

The proof below is for DN. The result for DA is proved analogously.

In what follows, whenever we talk about continuity and convergence on measure spaces, the topology under consideration is the topology of weak convergence of measures. We use \(\tau_n \to \tau \) to denote that the sequence \((\tau_n)_{n \in \mathbb{N}} \) converges to \(\tau \) in that topology.

As mentioned in Section 3, each \(\tau \in \mathcal{T} \) results in a measure \(G_\tau \) on \(P \times S \times [0,1] \) given by

\[
G_\tau((\succ, s, r) \in P \times S \times [0,1] : \succ \in P', s \in S', r \in (r_0, r_1)) = \tau((v, h) \in V \times \tilde{H} : \succ \in P', s \in S') \times (r_1 - r_0),
\]

for each \(P' \subseteq P, S' \subseteq S \) and \((r_0, r_1) \subseteq [0,1] \).

For two measures \(G \) and \(G' \) on \(P \times S \times [0,1] \), we define a distance between them by

\[
d(G, G') := \sup_{P' \subseteq P, S' \subseteq S, r_0, r_1 \in [0,1]} \left| G\left((\succ, s, r) \in P \times S \times [0,1] : \succ \in P', s \in S', r \in (r_0, r_1)\right) - G'\left((\succ, s, r) \in P \times S \times [0,1] : \succ \in P', s \in S', r \in (r_0, r_1)\right) \right|.
\]

Lemma 1. Let \((\tau, p)\) be an arbitrary competitive equilibrium of DN and let \(c \) denote the corresponding cutoffs vector. Consider a sequence of economies \((\tau_n)_{n \in \mathbb{N}}\) converging to \(\tau \) and the corresponding sequence of DN cutoffs \((c_n)_{n \in \mathbb{N}}\). Then, \(c_n \to c \).

Proof. The proof has two part.

Part 1. First, we show that \(G_{\tau_n} \to G_\tau \). By definitions of the distance function \(d \) and measures \(G_{\tau_n} \) and \(G_\tau \),

\[
d(G_{\tau_n}, G_\tau) = \sup_{P' \subseteq P, S' \subseteq S, r_0, r_1 \in [0,1]} (r_1 - r_0) \times |\tau_n((v, h) \in V \times \tilde{H} : \succ \in P', s \in S')|
\]
\[-\tau\left((v, h) \in V \times \bar{H} : \succ vh \in P', s_h \in S'\right)\]
\[\leq \max_{P' \subseteq P, S' \subseteq S} \left| \tau_n\left((v, h) \in V \times \bar{H} : \succ vh \in P', s_h \in S'\right) - \tau\left((v, h) \in V \times \bar{H} : \succ vh \in P', s_h \in S'\right)\right|. \quad (10)\]

Since \(\tau_n \to \tau\), by Portmanteau theorem (Billingsley, 1968) the last term in equation 10 converges to zero. This establishes Part 1.

Part 2. We say \(G_\tau\) has rich support if a positive measure of each preference type resides in each neighborhood. Formally,

Definition 7. \(G_\tau\) has rich support if for all \(\succ \in P\) and \(s \in S\),

\[\tau\left((v, h) \in V \times \bar{H} : \succ vh \succ s, s_h = s\right) > 0.\]

By Lemma 3 in Abdulkadiroğlu et al. (2017b), in order to have \(c_n \to c\), it is sufficient to show that \(G_\tau\) has rich support. In what follows, we establish this result.

First, we prove that \(p_h < 1\) for all \(h \in H\). Suppose, for the sake of contradiction, that \(p_h \geq 1\) for some \(h \in H\). Then,

\[0 < q_h = \eta\left(v \in V : u_v(h, \tau) - p_h = \arg \max_{h' \in H} u_v(h', \tau) - p_{h'}\right)\]
\[\leq \eta\left(v \in V : u_v(h, \tau) - p_h \geq 0\right) \leq \eta\left(v \in V : \max_{s \in S} v(h, s) - p_h \geq 0\right) = 0,\]

a contradiction.

Now, consider an arbitrary \(h \in H\) and let \(\epsilon := 1 - p_h > 0\). Define a subset \(V_h \subseteq V\) by

\[V_h := \left\{v \in V : v(h, s) > 1 - \epsilon/2, v(h', s) < \epsilon/2, \forall s \in S, h' \in H \setminus \{h\}\right\}.\]

When choosing \(h\), type \(v \in V_h\) guarantees a payoff strictly larger than

\[1 - \epsilon/2 - p_h = 1 - \epsilon/2 - (1 - \epsilon) = \epsilon/2,\]
and when choosing \(h' \in H \setminus \{h\} \), she can obtain at most
\[
\epsilon/2 - p_{h'} \leq \epsilon/2.
\]
Thus, almost all types in \(V_h \) choose \(h \) at any CE and
\[
\tau(v \in V_h : s_h = s) = \eta(V_h) > 0.
\]
The last inequality follows from that \(\eta \) has full support. Again, by full support of \(\eta \), for each \(\succ \in P \) there is a positive measure of types in \(V_h \) whose preferences are \(\succ \). Denoting by \(\delta \) the smallest of these measures, we obtain the desired result. \(\square \)

As Part 2 of Lemma 1 demonstrates, all types in \(V_h \) choose neighborhood \(h \) in any CE \((\tau, p) \). Consider an arbitrary \(\tau \in T \) satisfying
\[
\tau\left((v, h) \in V \times \bar{H} : v \in V_{h'}, h = h'\right) = \eta(V_{h'}) \text{ for all } h' \in H. \tag{11}
\]
Let \(\tau_n \to \tau \) be an arbitrary sequences of neighborhood choices with cutoffs the corresponding cutoffs sequence \(c_n \). Then, with similar arguments as in Lemma 1 we establish that \(c_n \to c \), where \(c \) denotes the cutoff of \(\tau \). Thus, the continuity of cutoffs hold for any neighborhood choices \(\tau \) satisfying equation 11. For the rest of the proof, we restrict attention to such neighborhood choices. With abuse of notation, we denote this set by \(T \).

Lemma 2. The collection of functions \((u_v(h, \tau))_{v \in V, h \in H} \) is equicontinuous in \(\tau \).

Proof. Recall that \(u_v(h, \tau) = \sum_{s \in S} \lambda_s(\succ_v, h, \tau)v(h, s) \). First, we show that \(\lambda_s(\succ, h, \tau) \) is continuous in \(\tau \). That \(\lambda_{vs}(h, \tau) \) is continuous in \(c \) is immediate from equations 3 and 4. Thus, by Lemma 1, \(\lambda_{vs}(h, \tau) \) is continuous in \(\tau \).

Since \(\{\lambda_{vs}(h, \tau)\}_{v \in V, h \in H} \) is a finite collection of functions, it is equicontinuous. Since \(v \) is bounded, \(\{u_v(h, \tau)\}_{h \in H, v \in V} \) is equicontinuous, too. \(\square \)
Lemma 3. For any $\tau \in \mathcal{T}$, there is a unique price vector $\mathcal{P}(\tau) \in \mathbb{R}^{\lvert H \rvert}_+$ such that for all $h \in H$,

$$\eta \left(v \in V : u_v(h, \tau) - \mathcal{P}_h(\tau) = \arg \max_{h' \in H} u_v(h', \tau) - \mathcal{P}_{h'}(\tau) \right) \leq q_h. \quad (12)$$

and the equality is strict only if $\mathcal{P}_h(\tau) = 0$. Moreover, $\mathcal{P}(\tau)$ is continuous in τ.

Proof. Let $\tilde{V} := [0, 1]^{\lvert H \rvert}$ and define a measure $\tilde{\eta}$ over \tilde{V} by

$$\tilde{\eta}(\tilde{U}) = \eta \left(v \in V : (u_v(h, \tau))_{h \in H} \in \tilde{U} \right),$$

for all measurable $\tilde{U} \subseteq \tilde{V}$. Since $\tilde{\eta}$ is absolutely continuous and full support, the existence of the unique vector $\mathcal{P}(\tau) \in \mathbb{R}^{N}$ satisfying equation 12 follows from Gretsky et al. (1999).

We divide the proof of continuity of $\mathcal{P} : \mathcal{T} \to \mathbb{R}^{\lvert H \rvert}_+$ to two parts.

Part 1. Suppose $\tau_n \rightharpoonup \tau$. We show that $\tilde{\eta}_n \rightharpoonup \tilde{\eta}$. Consider an arbitrary $\epsilon > 0$ and $\tilde{U} \subseteq \tilde{V}$ with a measure zero boundary $\partial \tilde{U}$. By Portmanteau theorem, it is sufficient to show that $\tilde{\eta}_n(\tilde{U}) \to \tilde{\eta}(\tilde{U})$.

By absolute continuity of $\tilde{\eta}$, there is an open cover $\{O\}_{i \in I}$ of $\partial \tilde{U}$ such that $\tilde{\eta} \left(\cup_{i \in I} O_i \right) < \epsilon$. Since $\partial \tilde{U}$ is a compact set, there is $\delta > 0$ such that for any $\tilde{u} \in \partial \tilde{U}$, the δ-ball around \tilde{u} is contained in some element of the open cover $\{O_i\}_{i \in I}$. For any $\delta \in [0, \delta]$, let \tilde{E}^δ denote the union of δ-balls around each point in $\partial \tilde{U}$. Then, $\partial \tilde{U} \subseteq \tilde{E}^\delta$ and

$$\tilde{\eta}(\tilde{E}^\delta) \leq \tilde{\eta} \left(\cup_{i \in I} O_i \right) < \epsilon. \quad (13)$$

By Lemma 2, for any sufficiently large $n \in \mathbb{N}$,

$$\tilde{\eta}_n(\tilde{E}^{\delta/2}) = \eta \left(v \in V : (u_v(h, \tau_n))_{h \in H} \in \tilde{E}^{\delta/2} \right) \leq \eta \left(v \in V : (u_v(h, \tau))_{h \in H} \in \tilde{E}^\delta \right) = \tilde{\eta}(\tilde{E}^\delta) < \epsilon. \quad (14)$$

By equation 13,

$$\tilde{\eta}(\tilde{U}) \leq \tilde{\eta}(\tilde{U} \setminus \tilde{E}^\delta) + \tilde{\eta}(\tilde{E}^\delta) < \tilde{\eta}(\tilde{U} \setminus \tilde{E}^\delta) + \epsilon. \quad (15)$$
By Lemma 2, potentially for a larger \(n \in \mathbb{N} \),
\[
\hat{\eta}(\tilde{U} \setminus \tilde{E}^\delta) = \eta \left(v \in V : (u_v(h, \tau))_{h \in H} \in \tilde{U} \setminus \tilde{E}^\delta \right)
\leq \eta \left(v \in V : (u_v(h, \tau_n))_{h \in H} \in \tilde{U} \right) = \tilde{\eta}_n(\tilde{U}). \tag{16}
\]
Combining equations 15 and 16,
\[
\tilde{\eta}(\tilde{U}) < \tilde{\eta}_n(\tilde{U}) + \epsilon.
\]
Similarly, by equation 14,
\[
\tilde{\eta}_n(\tilde{U}) \leq \tilde{\eta}_n(\tilde{U} \setminus \tilde{E}^{\delta/2}) + \tilde{\eta}_n(\tilde{E}^{\delta/2}) < \tilde{\eta}_n(\tilde{U} \setminus \tilde{E}^{\delta/2}) + \epsilon, \tag{17}
\]
and by Lemma 2,
\[
\tilde{\eta}_n(\tilde{U} \setminus \tilde{E}^{\delta/2}) = \eta \left(v \in V : (u_v(h, \tau))_{h \in H} \in \tilde{U} \setminus \tilde{E}^{\delta/2} \right)
\leq \eta \left(v \in V : (u_v(h, \tau))_{h \in H} \in \tilde{U} \right) = \tilde{\eta}(\tilde{U}). \tag{18}
\]
Combining 17 and 18,
\[
\tilde{\eta}_n(\tilde{U}) < \tilde{\eta}(\tilde{U}) + \epsilon.
\]

Part 2. Now, we show that \(P \) is continuous in \(\hat{\eta} \). Let \(\tilde{\eta}_n \to \hat{\eta} \) and \((P^n)_{n \in \mathbb{N}} \) be the corresponding sequence of prices. Note that \(P_h^n < 1 \) for all \(h \in H \). Suppose, for the sake of contradiction, that \(P_h^n \geq 1 \) for some \(h \in H \) and \(n \in \mathbb{N} \). Then,
\[
0 < q_h = \eta \left(v \in V : u_v(h, \tau^n) - P_h^n = \arg \max_{h' \in H} u_v(h', \tau^n) - P_h^{n'} \right)
\leq \eta \left(v \in V : u_v(h, \tau^n) - v_h \geq 0 \right) \leq \eta \left(v \in V : \max_{s \in S} v(h, s) - P_h^n \geq 0 \right) = 0,
\]
a contradiction. By Bolzano-Weierstrass theorem, \((P^n)_{n \in \mathbb{N}} \) has a convergent subsequence. Without loss of generality, suppose \(P^n \to P^* \). It is sufficient to show that \(P^* \) satisfies equation 12. By uniqueness, this would imply \(P^* = P \) and the desired continuity result. For all \(h \in H \) define
\[
\tilde{V}_h := \left\{ \tilde{v} \in \tilde{V} : \tilde{v}(h) - P_h^* = \arg \max_{h' \in H} \tilde{v}(h') - P_{h'}^* \right\}.
\]

50
Suppose, for the sake of contradiction, that \(\tilde{\eta}(\tilde{V}_h) \neq q_h \) for some \(h \in H \). Without loss of generality, let \(\tilde{\eta}(\tilde{V}_h) > q_h \). Since \(\tilde{\eta}_n \rightharpoonup \tilde{\eta} \) there are \(\delta > 0 \) and \(M \in \mathbb{N} \) such that \(\tilde{\eta}_n(\tilde{V}_h) > q_h + \delta, \forall n > M \). By picking \(n \) large enough we can make \(\mathcal{P}^n \) arbitrarily close to \(\mathcal{P}^* \) and therefore

\[
\tilde{\eta}_n(\tilde{v} \in \tilde{V} : \tilde{v}(h) - \mathcal{P}^n_h = \arg \max_{h' \in \bar{H}} \tilde{v}(h') - \mathcal{P}^n_{h'} > q_h),
\]
a contradiction. This completes the proof of Lemma 3.

Define families’ best response mapping \(\mathcal{B} : \mathcal{T} \rightarrow \mathcal{T} \) by

\[
\mathcal{B}_\tau(U, h) = \eta\left(v \in U : h = \arg \max_{h' \in \bar{H}} u_v(h', \tau) - \mathcal{P}^{\tau}_{h'}(\tau)\right),
\]
for all \(h \in H \) and measurable \(U \subseteq V \).

Lemma 4. \(\mathcal{B} \) is continuous.

Proof. Suppose \(\tau_n \rightharpoonup \tau \) and \(U \subseteq V \) is a measure zero boundary set.

For any \(v \in V \) and \(h \in H \), define \(\mathcal{F}_\tau(v, h) : \mathcal{T} \rightarrow \mathbb{R} \) by

\[
\mathcal{F}_\tau(v, h) = u_v(h, \tau) - \mathcal{P}_h(\tau) - \max_{h' \in \bar{H} \setminus \{h\}} (u_v(h', \tau) - \mathcal{P}_{h'}(\tau)).
\]

By Portmanteau theorem, it is sufficient to show

\[
\mathcal{B}_{\tau_n}(U, h) = \eta\left(v \in U : \mathcal{F}_{\tau_n}(v, h) \geq 0\right) \rightarrow \eta\left(v \in V : \mathcal{F}_\tau(v, h) \geq 0\right) = \mathcal{B}_\tau(U, h).
\]

By Lemmas 2 and 3, the collection of functions \(\{\mathcal{F}_\tau(v, h)\}_{v \in V, h \in H} \) is equicontinuous.

Fix an arbitrary \(\epsilon > 0 \). By absolute continuity of \(\eta \), there is \(\delta > 0 \) such that

\[
\eta\left(v \in U : \mathcal{F}_\tau(v, h) \in [0, \delta]\right) < \epsilon. \tag{19}
\]

By equicontinuity of \(\{\mathcal{F}_\tau(v, h)\}_{v \in V, h \in H} \), for any sufficiently large \(n \in \mathbb{N} \),

\[
\eta\left(v \in U : \mathcal{F}_{\tau_n}(v, h) \in [0, \delta/2]\right) < \eta\left(v \in U : \mathcal{F}_\tau(v, h) \in [0, \delta]\right) < \epsilon. \tag{20}
\]
By equation 19,
\[
\eta\left(v \in U : \mathcal{F}_\tau(v, h) \geq 0\right) = \eta\left(v \in U : \mathcal{F}_\tau(v, h) \geq \delta\right) + \eta\left(v \in U : \mathcal{F}_\tau(v, h) \in [0, \delta)\right) \\
< \eta\left(v \in U : \mathcal{F}_\tau(v, h) \geq \delta\right) + \epsilon. \tag{21}
\]
By equicontinuity of \(\{\mathcal{F}_\tau(v, h)\}_{v \in V, h \in H}\), and potentially larger \(n \in \mathbb{N}\),
\[
\eta\left(v \in U : \mathcal{F}_\tau(v, h) \geq \delta\right) < \eta\left(v \in U : \mathcal{F}_{\tau_n}(v, h) \geq 0\right). \tag{22}
\]
Combining 21 and 22,
\[
\eta\left(v \in U : \mathcal{F}_\tau(v, h) \geq 0\right) < \eta\left(v \in U : \mathcal{F}_{\tau_n}(v, h) \geq 0\right) + \epsilon.
\]
Similarly, by equation 20,
\[
\eta\left(v \in U : \mathcal{F}_{\tau_n}(v, h) \geq 0\right) = \eta\left(v \in U : \mathcal{F}_{\tau_n}(v, h) \geq \delta/2\right) + \eta\left(v \in U : \mathcal{F}_{\tau_n}(v, h) \in [0, \delta/2)\right) \\
< \eta\left(v \in U : \mathcal{F}_{\tau_n}(v, h) \geq \delta/2\right) + \epsilon, \tag{23}
\]
and by equicontinuity of \(\{\mathcal{F}_\tau(v, h)\}_{v \in V, h \in H}\),
\[
\eta\left(v \in U : \mathcal{F}_{\tau_n}(v, h) \geq \delta/2\right) < \eta\left(v \in U : \mathcal{F}_\tau(v, h) \geq 0\right). \tag{24}
\]
Combining 23 and 24,
\[
\eta\left(v \in U : \mathcal{F}_{\tau_n}(v, h) \geq 0\right) < \eta\left(v \in U : \mathcal{F}_\tau(v, h) \geq 0\right) + \epsilon.
\]
This completes the proof of Lemma 4. \(\square\)

Each fixed point \(\tau^*\) of \(B\) corresponds to a CE \((\tau^*, P(\tau^*))\) of DN. Since \(T\) is (weakly) compact and \(B : T \to T\) is (weakly) continuous, the existence of CE of DN follows from Schauder-Tychonoff fixed point theorem.
A.2 Proof of Theorem 4

The proof has two parts. Part 1 establishes the result for Assumption 1 and Part 2 establishes the result for Assumption 2. Note that η does not have full support under either of the assumptions. Nevertheless, CE exist in both cases.

In the proof we assume that $\sum_{i=1}^{N} q_{h_i} = 1$. The assumption is without loss of generality, since when $\sum_{i=1}^{N} q_{h_i} < 1$ we can add a neighborhood that no one family likes, and when $\sum_{i=1}^{N} q_{h_i} > 1$ we can add families who are indifferent across all schools and neighborhoods, and who in equilibrium will choose lower indexed neighborhoods and schools.

Part 1. Define the numbers $0 = a_0 \leq a_1 \leq ... \leq a_N = 1$ by

$$\eta\left(\{v_\alpha\}_{\alpha \in [a_{k-1}, a_k]}\right) = q_{h_k}, \forall k \in \{1, 2, ..., N\}.$$

Then, it is immediate from the increasing differences property of valuations that in any CE (τ^ϕ, p^ϕ) of $\phi \in \{DN, DA\}$,

$$\tau^\phi\left(\{v_\alpha\}_{\alpha \in [a_{k-1}, a_k]} \times \{h_k\}\right) = q_{h_k}, \forall k \in \{1, 2, ..., N\}.$$

We now compute school assignment probabilities and expected utilities under DA and DN.

Under DA, school assignment is solely determined by lottery numbers. Any type v_α is assigned to a school she prefers weakly more than s_k if and only if her lottery number is in the interval $[1 - \sum_{j=1}^{k} q_{s_j}, 1]$, the probability of which is $\min \{\sum_{j=1}^{k} q_{s_j}, 1\}$.

Under DN, school assignment is determined based on both neighborhood choice and lottery numbers. DN assignment can be given by the following procedure.

Round 1: Let $V_N = V$ and $\bar{V}_N = \{v_\alpha \in V_N : \alpha \in [a_{N-1}, a_N]\}$. Each family in \bar{V}_N is assigned to s_N with probability one. Remaining seats at s_N are assigned to families $q_{s_N} - \eta(\bar{V}_N) = q_{s_N} - q_{h_N}$ highest lottery numbers among the remaining ones.
Round $k > 1$: Let V_{N-k+1} denote the set of families that are unassigned by Round k and $\tilde{V}_{N-k+1} = \{v_\alpha \in V_{N-k+1} : \alpha \in [a_{N-k}, a_{N-k+1}]\}$. If $\eta(V_{N-k+1}) < q_{s_{N-k+1}}$, all remaining families are assigned to s_{N-k+1}. Otherwise, families in \tilde{V}_{N-k+1} is assigned to s_{N-k+1} with probability one and remaining seats at s_{N-k+1} are assigned to families with $q_{s_{N-k+1}} - \eta(\tilde{V}_{N-k+1}) = q_{s_{N-k+1}} - q_{s_{N-k+1}}$ highest lottery numbers among the remaining ones.

Consider an alternative school assignment procedure, where we apply only Round 1 of DN, and assign remaining students to schools uniform randomly. By an induction argument, in order to show that DN creates higher aggregate welfare than DA, it is sufficient to the alternative procedure creates higher aggregate welfare than DA.

The alternative procedure is equivalent to applying DA first, then switching the assignment of types in \tilde{V}_N who are not assigned to s_N, with types not in \tilde{V}_N who are assigned to s_N. By increasing differences assumption, this reallocation improves aggregate welfare. This completes the proof of Part 1.

Part 2. Let (τ^{DN}, p^{DN}) and (τ^{DA}, p^{DA}) be CE of DN and DA, respectively. Under DA, a family is assigned to a school she weakly prefers to s_k (satisfying $\sum_{j=k}^{N} s_k \leq 1$) if and only if her lottery number is in the interval $[1 - \sum_{j=1}^{k} q_{s_j}, 1]$, the probability of which is $\{\sum_{j=1}^{k} q_{s_j}\}$. Now, consider DN. A family with neighborhood choice h_k is assigned to a school weakly better than $s_i, i > k$ if and only if she has one of the $\sum_{j=1}^{i} (q_{s_j} - q_{h_j})$ highest lottery numbers among individuals who live in a neighborhood $h_j, j < i$. The probability of the latter event is $\frac{\sum_{j=1}^{i} (q_{s_j} - q_{h_j})}{1 - \sum_{j=1}^{i} q_{h_j}}$. Consider the ‘strategy’ of type v, where she chooses neighborhood h_j with probability q_{h_j} for all $j \in \{1, 2, ..., N\}$. Then, the probability that she is assigned to a school she prefers weakly more than $s_i, i > k$, is equal to

$$\sum_{j=1}^{i} q_{h_j} + (1 - \sum_{j=1}^{i} q_{h_j}) \frac{\sum_{j=1}^{i} (q_{s_j} - q_{h_j})}{1 - \sum_{j=1}^{i} q_{h_j}} = \sum_{j=1}^{i} q_{s_j}.$$

The first term on the left hand side is the probability of choosing a neighborhood with an index weakly larger than i, in which case the assignment to a school weakly
preferred to s_i is guaranteed. Thus, under any CE of DN, type v can replicate the DA assignment probabilities for any school she prefers strictly more than s_k by playing the strategy above. Neighborhood choices τ corresponding to almost all types playing this strategy is given by

$$\tau(U \times \{h_j\}) = \eta(U) \times \eta_{h_j},$$

for all measurable $U \subseteq V$ and $h_j \in H$. Then,

$$\int u^D_N(v, \tau^D_N)d\tau^D_N \geq \int u^D_N(v, \tau^D_N)d\tau \geq \int u^D_A(v, \tau^D_A)d\tau^D_A,$$

where the first inequality follows equation 5 and the second inequality follows from strategy τ replicates DA assignment probabilities for any school that a family prefers to her neighborhood school. This complete the proof of Part 2.

A.3 Proof of Theorem 6

First, we prove point 1. Consider an arbitrary economy η and $\epsilon > 0$. Suppose $H'_{NA} \not\subseteq H'_{DN}$ for all η' with $\|\eta - \eta'\|_2 < \epsilon$. Consider the economy

$$\eta' = \left(1 - \frac{\epsilon}{|H| + 1}\right) \times \eta + \sum_{h \in H} \frac{\epsilon}{|H| + 1} \times \delta_{(v_h, 0)},$$

where $\delta_{(v_h, 0)}$ is the Dirac measure that puts all probability mass on the point $(v_h, 0)$, and for each $h \in H$,

$$v_h(h', s') = \begin{cases} 1 & \text{if } (h', s') = (h, s_h), \\ 0 & \text{otherwise.} \end{cases}$$

Consider a neighborhood $h \in H'_{NA} \setminus H'_{DN}$. It is immediate that all families with type $(v_h, 0)$ prefer NA to DN.

Now we prove point 2. Consider an arbitrary economy η and $\epsilon > 0$. Suppose $H'_{NA} \not\subseteq H'_{DA}$ or $\{s_h \in S : h \in H'_{NA}\} \not\subseteq S'_{DA}$ for all η' with $\|\eta - \eta'\|_2 < \epsilon$. Consider the economy

$$\eta' = \left(1 - \frac{\epsilon}{2|H| + 1}\right) \times \eta + \sum_{h \in H} \frac{\epsilon}{2|H| + 1} \times \delta_{(v_h, 0)} + \sum_{h \in H} \frac{\epsilon}{|H| + 1} \times \delta_{(v_h, 0)};$$
where
\[
v_h(h', s') = \begin{cases}
1 & \text{if } (h', s') = (h, s_h), \\
0 & \text{otherwise},
\end{cases}
\]
and
\[
v_s(h, s') = \begin{cases}
1 & \text{if } s' = s, \\
0 & \text{otherwise}.
\end{cases}
\]
If there is a neighborhood \(h \in H^{NA}_- \setminus H^{DA}_- \), then all families with type \((v_h, 0)\) prefer \(NA \) to \(DN \). Otherwise, consider a school \(s \in \{ s_h \in S : h \in H^{NA}_- \} \setminus S^{DA}_- \). It is immediate that all families with type \((v_s, 0)\) prefer \(NA \) to \(DA \).

A.4 Proof of Corollary 1

Since neighborhoods and schools are ranked, the set of underdemanded neighborhoods are those with index \(k \) satisfying \(\sum_{j=k}^{N} q_{h_j} \geq 1 \) under all three mechanisms. Moreover, the set of underdemanded schools under \(DN \) and \(DA \) are those with index \(k \) satisfying \(\sum_{j=k}^{N} q_{s_j} \geq 1 \). The result therefore follows from that \(q_{s_j} \geq q_{h_j} \) for all \(j \in \{1, 2, \ldots, N\} \).

A.5 Proof of Corollary 2

The proof has two parts. Part 1 establishes that \(H^{NA}_- = H_- := \arg \max_{h \in H} q_h \subseteq H^{DA}_- \), and Part 2 establishes that \(\{ s_h \in S : h \in H^{NA}_- \} \subseteq S^{DA}_- \). By Theorem 5, these two conditions are sufficient to prove Corollary 2.

Part 1. We first show that \(H^{NA}_- \subseteq H_- \). Suppose, for the sake of contradiction, that \(p^{NA}_h = 0 \) for some \(h \in H \setminus H_- \). Consider an arbitrary \(\bar{h} \in H_- \). Then,
\[
q_h = \eta\left((v, b) \in V \times B : h = \arg \max_{h' \in \bar{h}} v(h', s_{h'}) - p^{NA}_{h'} \right)
= \eta\left((v, b) \in V \times B : v(h, s_h) \geq v(\bar{h}, s_{\bar{h}}) - p^{NA}_h \right)
\]
and $v(h, s_h) \geq v(h', s_{h'}) - p_h^{NA}, \forall h' \in \bar{H}_b \setminus \{h, \bar{h}\}$
\[\geq \eta \left((v, b) \in V \times B : v(h, s_h) \geq v(\bar{h}, s_{\bar{h}}) \text{ and } v(h, s_h) \geq v(h', s_{h'}) - p_h^{NA}, \forall h' \in \bar{H}_b \setminus \{h, \bar{h}\} \right) \]
\[= \eta \left((v, b) \in V \times B : v(\bar{h}, s_{\bar{h}}) \geq v(h, s_h) \text{ and } v(\bar{h}, s_{\bar{h}}) \geq v(h', s_{h'}) - p_h^{NA}, \forall h' \in \bar{H}_b \setminus \{h, \bar{h}\} \right) \]
\[\geq \eta \left((v, b) \in V \times B : v(\bar{h}, s_{\bar{h}}) \geq v(h, s_h) - p_h^{NA} \geq v(h, s_h) \right) \]
and $v(\bar{h}, s_{\bar{h}}) - p_h^{NA} \geq v(h', s_{h'}) - p_{h'}^{NA}, \forall h' \in \bar{H}_b \setminus \{h, \bar{h}\}$
\[\geq \eta \left((v, b) \in V \times B : b \geq p_h^{NA}, v(\bar{h}, s_{\bar{h}}) - p_h^{NA} \geq v(h, s_h) \right) \]
and $v(\bar{h}, s_{\bar{h}}) - p_h^{NA} \geq v(h', s_{h'}) - p_{h'}^{NA}, \forall h' \in \bar{H}_b \setminus \{h, \bar{h}\}$
\[\eta \left((v, b) \in V \times B : \bar{h} = \arg \max_{h' \in \bar{H}_b} v(h', s_{h'}) - p_{h'}^{NA} \right) = q_h > q_h, \]
a contradiction. The second equality above follows from uniformity (therefore, symmetry) of η. The remaining steps are immediate. It is left to show that $H_- \subseteq H_+^{-NA}$, or equivalently, $p_h^{NA} = 0$ for all $h \in H_-$. Let $\bar{h} \in H_-$ be such that $p_h^{NA} = 0$. Such a neighborhood exists since $H_- \supseteq H_+^{NA} \neq \emptyset$. Suppose, for the sake of contradiction, that $p_h^{NA} > 0$. Then,
\[q_h = \eta \left((v, b) \in V \times B : h = \arg \max_{h' \in \bar{H}_b} v(h', s_{h'}) - p_{h'}^{NA} \right) \]
\[= \eta \left((v, b) \in V \times B : v(h, s_h) - p_h^{NA} \geq v(\bar{h}, s_{\bar{h}}) - p_h^{NA} \right) \]
and $v(h, s_h) - p_h^{NA} \geq v(h', s_{h'}) - p_{h'}^{NA}, \forall h' \in \bar{H}_b \setminus \{h, \bar{h}\}$
\[< \eta \left((v, b) \in V \times B : v(\bar{h}, s_{\bar{h}}) - p_h^{NA} \geq v(h, s_h) - p_h^{NA} \right) \]
and $v(\bar{h}, s_{\bar{h}}) - p_h^{NA} \geq v(h', s_{h'}) - p_{h'}^{NA}, \forall h' \in \bar{H}_b \setminus \{h, \bar{h}\}$
\[= \eta \left((v, b) \in V \times B : b \geq p_h^{NA}, v(\bar{h}, s_{\bar{h}}) - p_h^{NA} \geq v(h, s_h) \right) \]
and $v(\bar{h}, s_{\bar{h}}) - p_h^{NA} \geq v(h', s_{h'}) - p_{h'}^{NA}, \forall h' \in \bar{H}_b \setminus \{h, \bar{h}\}$
\[\eta \left((v, b) \in V \times B : \bar{h} = \arg \max_{h' \in \bar{H}_b} v(h', s_{h'}) - p_{h'}^{NA} \right) = q_h, \]
a contradiction. The strict inequality above follows from uniformity of η and from that $p_h^{NA} > 0 = p_h^{NA}$.
We now show that $H_- \subseteq H_{DA}^-$.

Let the mapping $\pi_{h \leftrightarrow h'} : V \to V$ be such that for all $s \in S$,

$$\pi_{h \leftrightarrow h'}(v)(h, s) = v(h', s), \pi_{h \leftrightarrow h'}(v)(h', s) = v(h, s),$$

and

$$\pi_{h \leftrightarrow h'}(v)(h'', s) = v(h'', s),$$

for all $h'' \in H \setminus \{h, h'\}$.

By uniformity of η, for any measurable $U \subseteq V$,

$$\eta(U) = \eta\left((v, b) \in V \times B : \pi_{h \leftrightarrow h'}(v) \in U\right). \quad (25)$$

Suppose, for the sake of contradiction, that $p_h^{DA} > 0$ for some $h \in H_-$. Consider an arbitrary $\bar{h} \in H_{DA}^-$. Then,

$$q_h = \eta\left((v, b) \in V \times B : h = \arg \max_{h' \in \bar{H}_b} u_v^{DA}(h', \tau^{DA}) - p_h^{DA}\right)$$

$$= \eta\left((v, b) \in V \times B : u_v^{DA}(h, \tau^{DA}) - p_h^{DA} \geq u_v^{DA}(\bar{h}, \tau^{DA}) - p_h^{DA}\right)$$

and

$$u_v^{DA}(h, \tau^{DA}) - p_h^{DA} \geq u_v^{DA}(h', \tau^{DA}) - p_h^{DA}, \forall h' \in \bar{H}_b \setminus \{h, \bar{h}\}$$

$$= \eta\left((v, b) \in V \times B : u_v^{DA}(\bar{h}, \tau^{DA}) - p_h^{DA} \geq u_v^{DA}(h', \tau^{DA}) - p_h^{DA}, \forall h' \in \bar{H}_b \setminus \{h, \bar{h}\}\right)$$

$$< \eta\left((v, b) \in V \times B : u_v^{DA}(\bar{h}, \tau^{DA}) - p_h^{DA} \geq u_v^{DA}(h', \tau^{DA}) - p_h^{DA}, \forall h' \in \bar{H}_b \setminus \{h, \bar{h}\}\right)$$

$$= \eta\left((v, b) \in V \times B : \bar{h} = \arg \max_{h' \in \bar{H}_b} u_v^{DA}(h', \tau^{DA}) - p_{h'}^{DA}\right) = q_{\bar{h}},$$

a contradiction. The third equality follows from equation 25, and the strict inequality follows $p_h^{DA} > 0 = p_{\bar{h}}^{DA}$.

Part 2. Consider an arbitrary $\bar{s} \in H_-$. We show that $\bar{s} := s_{\bar{h}} \in S_{DA}^-$. Suppose, for the sake of contradiction, that

$$\lambda := \lambda_{\bar{s} \bar{h}}^{\tau^{DA}}(h, \tau^{DA}) < \lambda_{\bar{s} \bar{h}}^{\tau^{DA}}(h, \tau^{DA}) = 1,$$
for some \(s \in S \) and types \(\bar{v} \) and \(v \) that rank \(\bar{s} \) and \(s \) as first choices, respectively. Note that these probabilities are the same for all \(h \in H \).

For each \(h \in H \), let \(U_h \subset V_h \) denote the set of types that rank \(\bar{s} \) and \(s \) as the first two choices, in arbitrary order. Then,

\[
\sum_{h \in H} \eta\left((v, b) \in U_h \times B : v(h, \bar{s}) > v(h, s) \text{ and } h = \arg \max_{h' \in H} u^D_v(h', \tau^{DA}) - p^{DA}_{h'}\right)
\]

\[
= \sum_{h \in H} \eta\left((v, b) \in U_h \times B : v(h, \bar{s}) > v(h, s) \right.
\]

\[
\text{and } \lambda v(h, \bar{s}) + (1 - \lambda)v(h, s) - p^{DA}_h \geq \lambda v(h', \bar{s}) + (1 - \lambda)v(h', s) - p^{DA}_{h'}, \forall h' \in H
\]

\[
< \sum_{h \in H} \eta\left((v, b) \in U_h \times B : v(h, s) > v(h, \bar{s}) \right.
\]

\[
\text{and } v(h, s) - p^{DA}_h \geq h = v(h', s) - p^{DA}_{h'}, \forall h' \in H
\]

\[
= \sum_{h \in H} \eta\left((v, b) \in U_h \times B : v(h, s) > v(h, \bar{s}) \text{ and } h = \arg \max_{h' \in H} u^D_v(h', \tau^{DA}) - p^{DA}_{h'}\right).
\]

The strict inequality follows from uniformity of \(\eta \) and from that \(\lambda < 1 \). Thus, in equilibrium the mass of types that rank \(\bar{s} \) as first choice and \(s \) as second choice is larger than the mass of types that rank \(s \) as first choice and \(\bar{s} \) as second choice. With analogous arguments, we can show that this is true for any position of choices for \(\bar{s} \) and \(s \). This contradicts that the probability of being assigned to \(\bar{s} \) is smaller than the probability of being assigned to \(s \). This completes the proof.

A.6 Proof of Theorem 7

First, consider \(\phi = NA \). Let \((\tau, p)\) be a CE of NA for each size \(k \in \mathbb{N} \) economy \((v_f)_{f \in F_k}\); define \(\sigma_k : F_k \to H \) by

\[
\sigma_k(f) = \arg \max_{h \in H} v_f(h, s_h) - p_h.
\]

We show that for a sufficiently large \(k \in \mathbb{N} \), the probability that \((\sigma_k, p)\) satisfies the conditions of Definition 6 of \(\epsilon \)-CE approaches to one.
1. The first point is immediate from the definition of σ_k.

2. Let $F_{kh} = \{ f \in F : v_f(h, s_h) - p_h = \arg\max_{h' \in H} v_f(h', s_{h'}) - p_{h'} \}$ denote the set of families in F whose optimal choice is h (ties broken arbitrarily). Then,

$$\frac{|\sigma_k^{-1}(h)|}{k} = \frac{|F_{kh}|}{k} \xrightarrow{p} \eta \left(v \in V : h = \arg\max_{h' \in H} v(h', s_{h'}) - p_{h'} \right)$$

$$= \tau(V \times \{h\}) \le q_h < q_h + \epsilon, \quad (26)$$

where the convergence in probability follows from law of large numbers. Multiplying the first and last terms of equation 26 by k, we obtain the desired condition.

3. The proof is by contrapositive. Suppose $p_h \neq 0$. Then,

$$\frac{|\sigma_k^{-1}(h)|}{k} = \frac{|F_{kh}|}{k} \xrightarrow{p} \eta \left(v \in V : h = \arg\max_{h' \in H} v(h', s_{h'}) - p_{h'} \right)$$

$$= \tau(V \times \{h\}) = q_h > q_h - \epsilon, \quad (27)$$

where the last equality follows from $p_h \neq 0$. Multiplying the first and last terms of equation 27 by k, we obtain $|\sigma_k^{-1}(h)| > (q_h - \epsilon)k$ with probability approaching to one.

Now consider $\phi = DN$. The proof for $\phi = DA$ is similar. Let (τ, p) be a CE of NA for each size $k \in \mathbb{N}$ economy $(v_f)_{f \in F_k}$, define $\sigma_k : F_N \to H$ by

$$\sigma_k(f) = \arg\max_{h \in H} u_f(h, \tau) - p_h.$$

We show that for a sufficiently large $k \in \mathbb{N}$, the probability that (σ_k, p) satisfies the conditions of Definition 6 of ϵ-CE approaches to one.

1. Let $F_{kh} = \{ f \in F : h = \arg\max_{h' \in H} u_f(h', \sigma_k) - p_{h'} \}$ denote the set of families in F whose optimal choice is h (ties broken arbitrarily). Then, by law of large number,

$$\frac{|\sigma_k^{-1}(h)|}{k} = \frac{|F_{kh}|}{k} \xrightarrow{p} \eta \left(v \in V : h = \arg\max_{h' \in H} u_f(h', \sigma_k) - p_{h'} \right) = \tau(V \times \{h\}).$$
Thus, the proportion of individuals with given preferences and priorities in the discrete economy converges to its continuum analog. This, by Lemma 3 of Abdulkadiroğlu et al. (2017b), implies that $u_f(h, \sigma_k)$ converges to $u_f(h, \tau)$ in probability for all $h \in H$, establishing the desired result.

2. The proof for this part is similar to that for $\phi = NA$.

3. The proof for this part is similar to that for $\phi = NA$.

B More Examples

The following example demonstrates that some families may prefer NA to DN.

Example 4. There are two neighborhoods $H = \{h_1, h_2\}$ and two schools $S = \{s_1, s_2\}$. Each neighborhood and school has a capacity 0.5. Economy η is supported at only two points v_1 and v_2, with

$$\eta\left(v \in V : v = v_1\right) = \eta\left(v \in V : v = v_2\right) = 0.5.$$

Valuations are given in Table 6.

<table>
<thead>
<tr>
<th></th>
<th>(h_1, s_1)</th>
<th>(h_1, s_2)</th>
<th>(h_2, s_1)</th>
<th>(h_2, s_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>v_2</td>
<td>0.5</td>
<td>0</td>
<td>0.8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table 6: Valuations

It is easy to verify that prices $p^{NA}_{h_1} = p^{NA}_{h_2} = 0$ support CE (τ^{NA}, p^{NA}) of NA, satisfying

$$\tau^{NA}\left((v, h) \in V \times \bar{H} : v = v_1, h = h_2\right) = \eta\left(v \in V : v = v_1\right),$$

and

$$\tau^{NA}\left((v, h) \in V \times \bar{H} : v = v_2, h = h_1\right) = \eta\left(v \in V : v = v_2\right).$$
Also, prices \(p_{h_1}^{DN} = 0, p_{h_2}^{DN} = 0.2 \) support \((\tau^{DN}, p^{DN})\) of \(DN\), satisfying
\[
\tau^{DN}((v, h) \in V \times \bar{H} : v = v_1, h = h_1) = \eta(v \in V : v = v_1),
\]
and
\[
\tau^{DN}((v, h) \in V \times \bar{H} : v = v_2, h = h_2) = \eta(v \in V : v = v_2).
\]
Thus,
\[
u_{v_1}^{NA}(h_2, \tau^{NA}) = 0.3 > 0.1 = u_{v_1}^{DN}(h_1, \tau^{DN}),
\]
and type \(v_1\) families prefer \(NA\) to \(DN\).

The next example demonstrates that in a discrete economy there may exist no CE of \(DA\).

Example 5. Consider a discrete economy with two families \(F = \{f_1, f_2\}\), two neighborhoods \(H = \{h_1, h_2\}\) and two schools \(S = \{s_1, s_2\}\). Assume \(q_{h_1} = q_{h_2} = q_{s_1} = 1\) and \(q_{s_2} = 2\). Valuations are given in Table 5.

<table>
<thead>
<tr>
<th></th>
<th>((h_1, s_1))</th>
<th>((h_1, s_2))</th>
<th>((h_2, s_1))</th>
<th>((h_2, s_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_1)</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>(f_2)</td>
<td>0</td>
<td>0.1</td>
<td>0.3</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 7: Valuations

Suppose, for the sake of contradiction, that \((\sigma, p)\) is a CE. Consider cases:

(i) Suppose \(\sigma(f_1) = h_1\) and \(\sigma(f_2) = h_2\). Then, \(f_1\)’s utility is \(\frac{1}{2} \times 0.5 = 0.25\) when choosing \(h_1\) and \(0.4\) when choosing \(h_2\). Thus, \(\sigma(f_1) = h_1\) implies \(p_2 - p_1 \geq 0.15\). Also, \(f_2\)’s utility is \(0.1\) when choosing \(h_1\) and \(\frac{1}{2} \times 0.3 = 0.15\) when choosing \(h_2\). Thus, \(\sigma(f_2) = h_2\) implies \(p_2 - p_1 \leq 0.05\), a contradiction.

(ii) Now suppose \(\sigma(f_1) = h_2\) and \(\sigma(f_2) = h_1\). Then, \(f_1\)’s utility is \(0.5\) when choosing \(h_1\) and \(0.4\) when choosing \(h_2\). Thus, \(\sigma(f_1) = h_2\) implies \(p_1 - p_2 \geq 0.1\). Also, \(f_2\)’s
utility is 0.1 when choosing h_1 and 0.3 when choosing h_2. Thus, $\sigma(f_2) = h_1$ implies $p_1 - p_2 \leq -0.2$, a contradiction.

Theorem 3 shows that aggregate welfare is unambiguously larger under DN than under NA. However, this does not necessarily mean that all families prefer DN to NA. Our next example demonstrates this fact. To keep things simpler, we consider a discrete economy.

Example 6. There are two families $F = \{f_1, f_2\}$, two neighborhoods $H = \{h_1, h_2\}$ and two schools $S = \{s_1, s_2\}$, each with a unit capacity.

Valuations are given in Table 6.

<table>
<thead>
<tr>
<th></th>
<th>(h_1, s_1)</th>
<th>(h_1, s_2)</th>
<th>(h_2, s_1)</th>
<th>(h_2, s_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>f_2</td>
<td>0.4</td>
<td>0.9</td>
<td>0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 8: Valuations

It is easy to verify that $\sigma^{NA}(f_1) = h_1, \sigma^{NA}(f_2) = h_2$ and $p^{NA} = (0, 0)$ is a CE of NA and $p^{DN} = (0.2, 0), \sigma^{DN}(f_1) = h_2$ and $p^{DN} = (0.2, 0)$ is a CE of DN. Moreover,

$u^{NA}_{f_1}(\sigma^{NA}(f_1), \sigma^{NA}) = 0.2 > 0.1 = u^{DN}_{f_1}(\sigma^{DN}(f_1), \sigma^{DN}),$

which shows that family f_1 prefers NA to DN.

C Multiple Tie-breaking

Consider the model in Section 3. We first define the Deferred Acceptance mechanisms for multiple tie-breaking. With abuse of terminology, we maintain the names DA and DN.
C.1 School Assignment Mechanisms

Deferred Acceptance without Neighborhood Priority (DA).

School assignment under DA is determined based on families’ preferences, school-specific lottery numbers and market clearing cutoffs, or simply cutoffs. Preferences are decided by neighborhood choices through equation 1. School-specific lottery numbers are drawn uniformly and independently from the unit interval. Formally, neighborhood choices \(\tau \) result in a probability measure \(G_\tau \) over \(P \times [0,1]^{|S|} \), given by

\[
G_\tau \left((\succ, r) \in P \times [0,1]^{|S|} : \succ \in P', r_s \in (r_{s0}, r_{s1}), \forall s \in S \right) = \tau \left((v, h) \in V \times \bar{H} : v_h \in P' \right) \times \prod_{s \in S} (r_{s1} - r_{s0}),
\]

for each \(P' \in P \) and \((r_{s0}, r_{s1}) \subseteq [0,1] \). Thus, \(G_\tau \left((\succ, r) \in P \times [0,1] : \succ \in P', r_s \in (r_{s0}, r_{s1}), \forall s \in S \right) \) equals the mass of types with preferences in \(P' \) and school \(s \) lottery numbers in the interval \((r_{s0}, r_{s1})\) for each \(s \in S \).

Cutoffs are derived through an iterative procedure that we describe below. For a vector \(c \in [0,1]^{|S|} \), the demand function \(D : [0,1]^{|S|} \rightarrow [0,1] \) is given by

\[
D_s(c) = G_\tau \left((\succ, r) \in P \times [0,1]^{|S|} : r_s \geq c_s \text{ and } s \succ s' \text{ for all } s' \text{ with } r_{s'} \geq c_{s'} \right).
\]

In words, \(D_s(c) \) is the mass of families whose school \(s \) lottery numbers exceed \(c_s \), and who prefer \(s \) to any other school \(s' \) where their school \(s' \) lottery numbers exceed \(c_{s'} \). For \(c \in [0,1]^{|S|} \) and \(x \in [0,1] \) we denote by \(c(s,x) \in [0,1]^{|S|} \) the vector that differs from \(c \) only by that \(c_s(s,x) = x \).

We define a sequence of vectors \((c^t)_{t=1}^{\infty} \) recursively by \(c^1 = 0 \) and

\[
c^t+1_s = \begin{cases}
0 & \text{if } D_s(c^t) < q_s, \\
\min \left\{ x \in [0,1] : D_s(c^t(s,x)) \leq q_s \right\} & \text{otherwise.}
\end{cases}
\]

As shown by Abdulkadiroğlu et al. (2017b), \((c^t)_{t \in \mathbb{N}} \) is convergent. Let \(c^{DA} := \lim_{t \to \infty} c^t \) denote the \(\textbf{DA cutoffs} \).
The DA cutoffs determine school assignment as follows. A family is assigned to school s if her school’s lottery number exceeds c_s^{DA}, and she prefers s to any school where her school-specific lottery number exceeds the corresponding DA cutoff. The probability of this event is

$$\lambda_{vs}^{DA}(h, \tau) = \prod_{s': s' > s} c_{s'}^{DA} \times (1 - c_{s}^{DA}). \quad (28)$$

The first term in the right-hand side of equation 28 is the probability that the family does not clear the cutoffs at choices more preferred to s, and the second term is the probability that the family clears the school s cutoff.

Deferred Acceptance with Neighborhood Priority (DN).

Under DN, school assignment is determined based on families’ preferences, school-specific lottery numbers, priorities and cutoffs. Again, preferences are decided by neighborhood choices through equation 1 and school-specific lottery numbers are drawn uniformly and independently from the unit interval. Families receive priority 1 at neighborhood schools and priority 0 at non-neighborhood ones. Formally, neighborhood choices τ result in a probability measure G_τ on $P \times S \times [0,1]|S|$ satisfying

$$G_\tau \left((\succ, s, r) \in P \times S \times [0,1]|S] : \succ \in P', s \in S', r_{s'} \in (r_{s0}, r_{s0}), \forall s' \in S \right)$$

$$\quad = \tau \left((v,h) \in V \times \bar{H} : v,s \in S' \right) \times \prod_{s \in S} \left(r_{s1} - r_{s0} \right),$$

for each $P' \subseteq P$, $S' \subseteq S$ and $(r_{s0}, r_{s1}) \subseteq [0,1]$. For a vector $c \in [0,2]|S|$ the demand function $D : [0,2]|S| \to [0,1]$ is given by

$$D_s(c) = G_\tau \left((\succ, s', r) \in P \times S \times [0,1]|S] : r_\succ + \mathbb{1}[s' = s] \geq c_s \text{ and } s \succ s'' \text{ for all } s'' \text{ with } r_{s''} + \mathbb{1}[s'' = s'] \geq c_{s''} \right).$$

Consider the sequence of vectors recursively defined by

$$c_{s}^{t+1} = \begin{cases} 0 & \text{if } D_s(c^t) < q_s \\ \min \left\{ x \in [0,2] : D_s(c^t(s, x)) \leq q_s \right\} & \text{otherwise} \end{cases}$$

65
and let \(c^{DN} := \lim_{t \to \infty} c^t \) denotes the **DN cutoffs**. A family is assigned to school \(s \) if her priority at \(s \) plus her school \(s \)'s lottery number exceeds \(c^{DN}_s \), and she prefers \(s \) to any school where her priority plus the school-specific lottery number exceeds the corresponding DN cutoff.

For a school \(s \) with \(c^{DN}_s > 1 \) is equal to

\[
\lambda^{DN}_{vs}(h, \tau) = \begin{cases}
0 & s_h \neq s, \\
\prod_{s': s' \succ vs s} \min \{ c^{DN}_{s'}, 1 \} \times (2 - c^{DN}_s) & \text{otherwise.}
\end{cases}
\]

For a school \(s \) with \(c^{DN}_s \leq 1 \),

\[
\lambda^{DN}_{vs}(h, \tau) = \begin{cases}
\prod_{s': s' \succ s, s' \neq s_h} \min \{ c^{DN}_{s'}, 1 \} \times (c^{DN}_{s_h} - 1) \times c^{DN}_s & s_h \succ vs s, \\
\prod_{s': s' \succ s} \min \{ c^{DN}_{s'}, 1 \} & s_h = s \\
\prod_{s': s' \succ s} \min \{ c^{DN}_{s'}, 1 \} \times c^{DN}_s & \text{otherwise.}
\end{cases}
\]

C.2 Results for Multiple-tie Breaking

Like in the single tie-breaking case, school assignment probabilities under multiple tie-breaking are continuous in the cutoffs. Therefore, Theorem 2 holds for this latter setting, too, and the proof is (almost) identical to its single-tie breaking analog. Theorem 5, Corollaries 1 and 2 and Theorem 7 are also analogously proved.

The remaining results and examples require modified proofs for multiple tie-breaking. However, to avoid unnecessarily lengthy discussions, we are agnostic about extending those to the multiple tie-breaking case.
Online Appendix: School Choice and the Housing Market

Aram Grigoryan

May, 2021

A Alternative School Assignment Mechanisms

A.1 Overview

This section studies aggregate and lowest-income family welfare under two additional school assignment mechanisms: Top Trading Cycles (TTC) and Immediate Acceptance (IA).

The TTC mechanism has been originally formulated by Shapley and Scarf (1974) and has been introduced for public school assignment by Abdulkadiroğlu and Sönmez (2003). For our continuum economy model, we use the formulation of TTC developed by Leshno and Lo (2021).

The IA mechanism, also known as the ‘Boston’ mechanism, is widely applied for public school admissions in the US and around the world. The mechanism has often been criticized on the grounds of being manipulable, i.e., families have incentives to misreport their true preferences to improve their school assignments (Abdulkadiroğlu
and Sönmez, 2003). Despite this potential shortcoming, it is also known that IA may improve families’ welfare as it allows to ‘signal’ their valuations by preference manipulation. For example, Abdulkadiroğlu, Che, and Yasuda (2011) show that in a setting without neighborhood priorities and where families have common ordinal preference rankings over schools, all families prefer any (symmetric Bayesian) equilibrium outcome of IA to the outcome of DA. This result does not extend to the setting with neighborhood priorities. An important observation in our analysis of IA is that families who reside in the neighborhoods of the least preferred school are worse-off under IA with neighborhood priorities compared to DN. The reason is that when the more preferred schools are sufficiently demanded, the families in the neighborhood of the least preferred school have no ‘safe option’ other than the least preferred schools. As a result, they may benefit by ranking a moderate school as a first choice to avoid the possibility of being rejected by all higher ranked choices and being assigned to the least preferred school. This observation is analogous to the ones in Calsamiglia, Martínez-Mora, and Miralles (2015) and Neilson, Akbarpour, Kapor, van Dijk, and Zimmerman (2020). Those papers demonstrate that families without outside options may prefer DA to IA. We do not explicitly model outside options, but because of neighborhood priorities, in our setting neighborhood schools correspond to outside options.

In what follows we talk about two versions of TTC and IA: one where families do not receive higher priorities at neighborhood schools, and one where they do so. When it is clear from the context, we do not mention which version of the mechanism we are talking about.

A.2 TTC

A.2.1 Overview

Consider the model in Section 3.
TTC without neighborhood priorities.

Neighborhood choices $\tau \in \mathcal{T}$ uniquely determines a probability measure G_τ over $P \times [0, 1]$, given by

$$G_\tau \left((\succ, r) \in P \times [0, 1] : \succ \in P', r \in (r_0, r_1) \right) = \tau \left((v, h) \in V \times \bar{H} : \succ vh \in P' \right) \times (r_1 - r_0),$$

for each $P' \subseteq P$ and $(r_0, r_1) \subseteq [0, 1]$.

For the resulting measure G_τ the TTC assignment (without neighborhood priorities) is found by the procedure given by Leshno and Lo (2021). We omit the technical details for the sake of brevity. In a nutshell, TTC assignment is determined by cutoffs $c^{TTC}_{ss'} := \left(c^{TTC}_{ss''} \right)_{s, s' \in S} \in [0, 1]^{S|\times S|}$, such that a family is assigned to school s if and only if her lottery number is larger than $\min_{s' \in S} c^{TTC}_{s's}$ and she prefers s to any school $s'' \in S \setminus \{s\}$ such that her lottery number is larger than $\min_{s' \in S} c^{TTC}_{s's''}$. Suppose the schools are indexed as follows, $\min_{s \in S} c^{TTC}_{ss_i} > \min_{s \in S} c^{TTC}_{ss_j}$ only if $i < j$. Then, denoting $c^{TTC}_{ss_0} := 0, \forall s \in S$, it follows from the TTC description by Leshno and Lo (2021) that the cutoffs c^{TTC} should satisfy

$$\sum_{i=1}^{k} G_\tau \left((\succ, r) \in P \times [0, 1] : s_k \succ s, \forall s \in S \setminus \{s_1, \ldots, s_{i-1}\}, r \in \left(\min_{s \in S} c^{TTC}_{ss_i}, \min_{s \in S} c^{TTC}_{ss_{i-1}} \right) \right) \leq q_{sk},$$

and the equation holds with equality whenever $\min_{s \in S} c^{TTC}_{ss_k} > 0$. It then follows from the description of DA cutoffs c^{DA}, that $c^{DA}_s = \min_{s' \in S} c^{TTC}_{s's}$ for all $s \in S$. Thus, we obtain the following equivalence result.

Proposition 1. For any $v \in V, h \in H$ and $\tau \in \mathcal{T}$,

$$u^{DA}_v(h, \tau) = u^{TTC}_v(h, \tau).$$

The result extends an earlier finding about the equivalence of DA (random serial dictatorship) and TTC (core from random endowments) by Abdulkadiroğlu and Sönmez (1998) to the continuum one-to-many matching model. To the best of our knowledge, out Proposition 1 is the first documentation of this observation.
Neighborhood choices \(\tau \) uniquely determined a probability measure \(G_\tau \) on \(P \times S \times [0, 1] \) satisfying

\[
G_\tau \left((\succ, s, r) \in P \times S \times [0, 1] : \succ \in P', s \in S', r \in (r_0, r_1) \right) = \tau \left((v, h) \in V \times H : \succ_{v, h} = \succ, s_h \in S' \right) \times (r_1 - r_0),
\]

for each \(P' \subseteq P, S' \subseteq S \) and \((r_0, r_1) \subseteq [0, 1] \).

For the resulting measure \(G_\tau \) the TTC assignment (with neighborhood priorities) is given by cutoffs \(c^{TTC} := (c^{TTC}_{s' s})_{s, s' \in S} \in [0, 2]|S|^2 \), such that a family, choosing neighborhood of school \(s' \), is assigned to school \(s \) if and only if her lottery number plus \(1 \) if \(s' = s \) is larger than \(\min_{s'' \in S} c^{TTC}_{s' s''} \) and she prefers \(s \) to any school \(s''' \in S \setminus \{s\} \) such that her lottery number plus \(1 \) if \(s'' = s''' \) is larger than \(\min_{s'' \in S} c^{TTC}_{s' s''} \).

Again, suppose the schools are indexed: \(\min_{s \in S} c^{TTC}_{s s_i} > \min_{s \in S} c^{TTC}_{s s_j} \) only if \(i < j \). Then, denoting \(c^{TTC}_{ss_0} := 0, \forall s \in S \), it follows from the TTC description by Leshno and Lo (2021) that the cutoffs \(c^{TTC} \) should satisfy

\[
\sum_{i=1}^k G_\tau \left((\succ, s', r) \in P \times S \times [0, 1] : s_k \succ s, \forall s \in S \setminus \{s_1, \ldots, s_{i-1}, r+1 \} \right) \leq q_{sk},
\]

and the equation holds with equality whenever \(\min_{s \in S} c^{TTC}_{s s_k} > 0 \).

TTC with neighborhood priorities is not equivalent to DA with neighborhood priorities. This is in contrast with Proposition 1, which established the equivalence for the case without neighborhood priorities. However, the equivalence holds for a special case of our problem, where families have common ordinal preference rankings over schools. This observation is important for establishing some of the further results.

Proposition 2. Let \(S = \{s_i\}_{i=1}^{|S|} \) and suppose there is a \(V' \subseteq V \) with \(\eta(V') = 1 \), such that \(v(h, s_i) \geq v(h, s_j) \) for all \(h \in H, s_i, s_j \in S, i \geq j \). Then, for any \(v \in V, h \in H \) and
\[\tau \in \mathcal{T}, \]

\[u^\text{DN}_v(h, \tau) = u^\text{TTC}_v(h, \tau). \]

We now discuss which results established for the Deferred Acceptance mechanism extend to TTC.\(^1\) The proofs of Theorem 3 and Theorem 5 directly apply to TTC. Moreover, Assumptions 1 and 2 imply same ordinal rankings. Therefore, Propositions 1 and 2 that Theorem 4, Corollary 1 and the second part of Corollary 2 apply to TTC, too.

\section*{A.3 IA}

Unlike the Deferred Acceptance and TTC, the IA mechanism is not strategyproof, i.e., truthfully reporting preferences is not a dominant strategy for families. Since preferences are typically unknown to the central planner, it is realistic to extend the model to allow families to choose not only where to reside, but also what preference ranking to report. Therefore we model families choices \(\tau \) as a (Borel) probability measure over \(V \times \bar{H} \times \mathcal{P} \). Let \(\mathcal{T} \) be the space of such measures.

For a given mechanism \(\phi \) and choices \(\tau \), we denote by \(\lambda^\phi_v(h, \succ, \tau) \in [0, 1] \) the probability that type \(v \) is assigned to school \(s \) conditional on choosing neighborhood \(h \) and submitting a preference ranking \(\succ \). Later in this section, we derive school assignment probabilities for IA with or without neighborhood priorities. Before that, we define competitive equilibrium in this extended model.

Given school assignment probabilities and neighborhood price vector \(p \in [0, 1]^{|H|} \), the expected utility of type \(v \) choosing neighborhood \(h \in H \) and submitting preference ranking \(\succ \) is equal to

\[u^\phi_v(h, \succ, \tau) - p_h. \]

\(^1\)We are ignorant about the existence and CE, and in what follows we restrict attention to economies that admit a CE.
where \(u^\phi_v(h,\succ,\tau) := \sum_{s \in S} \lambda^\phi_v(h,\succ,\tau) \nu(h,s) \). Also, let \(u^\phi_v(0,\succ,\tau) := 0 \) for all \(v \in V,\succ \in P \) and \(\tau \in T \).

Definition 1. For neighborhood choices \(\tau \in T \) and price vector \(p \in \mathbb{R}^{\lvert H \rvert}_+ \), we say a pair \((\tau,p)\) is a competitive equilibrium (CE) of mechanism \(\phi \) if it satisfies the following conditions:

1. \(\tau\left((v,h,\succ) \in V \times \bar{H} \times P : h = \arg \max_{h' \in \bar{H}} u^\phi_v(h',\succ,\tau) - ph'\right) = 1 \), where \(p_0 := 0 \),
2. \(\tau\left((v,h,\succ) \in V \times \bar{H} \times P : h = h'\right) \leq q_{h'}, \forall h' \in H \),
3. \(\tau\left((v,h,\succ) \in V \times \bar{H} \times P : h = h'\right) < q_{h'} \Rightarrow p_{h'} = 0. \)

We now derive school assignment probabilities two versions of IA mechanism. To the best of our knowledge, this is the first description of IA for the continuum economy model.

IA without neighborhood priorities.

Neighborhood choices \(\tau \in T \) uniquely determines a probability measure \(G_\tau \) over \(P^2 \times [0,1] \), given by

\[
G_\tau\left((\succ,\succ',r) \in P^2 \times [0,1] : \succ \in P', \succ' \in P'', r \in (r_0,r_1)\right) = \tau\left((v,h,\succ') \in V \times \bar{H} \times P : \succ_h \in P', \succ' \in P''\right) \times \left(r_1 - r_0\right),
\]

for each \(P',P'' \subseteq P \) and \((r_0,r_1) \subseteq [0,1]\).

For any \(\succ \in P \) and \(s \in S \), let \(rk_{\succ}(s) \) denote the rank of school \(s \) in the preference ranking \(P \) in reverse order (i.e., \(rk_{\succ}(s) = \lvert S \rvert \) when \(s \) the highest ranked according to \(\succ \), and \(rk_{\succ}(s) = 1 \) if it is the lowest ranked).

Like with the Deferred Acceptance mechanism, the IA assignment can be given by cutoffs. Cutoffs are derived through an iterative procedure that we describe below.
For a vector $c \in [1, |S| + 1]^{[S]}$, the demand function $D : [1, |S| + 1]^{[S]} \to [0, 1]$ is given by

$$D_s(c) = G_s((\succ, \succ', r) \in P^2 \times [0, 1] : r + rk_{\succ'}(s) \geq c_s \text{ and } s \succ s' \text{ for all } s' \text{ with } r + rk_{\succ'}(s') \geq c_{s'})$$

In other words, we may think of families having scores at schools which equals their lottery number plus the ranking of the school in their reported preferences. Thus, in this way families receive higher ‘priorities’ at IA when they rank it higher. Then, $D_s(c)$ is the mass of families whose scores exceed c_s, and who prefer s to any other school s' where their scores exceed $c_{s'}$. For $c \in [0, 1]^{[S]}$ and $x \in [1, |S| + 1]$ we denote by $c(s, x) \in [1, |S| + 1]^{[S]}$ the vector that differs from c only by that $c_s(s, x) = x$.

We define a sequence of vectors $(c^t)_{t=1}^{\infty}$ recursively by $c^1 = 0$ and

$$c_s^{t+1} = \begin{cases} 0 & \text{if } D_s(c^t) < q_s, \\ \min \{ x \in [0, 1] : D_s(c^t(s, x)) \leq q_s \} & \text{otherwise.} \end{cases}$$

It follows from similar arguments as in Abdulkadiroğlu, Angrist, Narita, and Pathak (2017), that the sequence $(c^t)_{t \in \mathbb{N}}$ is convergent. Let $c^{IA} := \lim_{t \to \infty} c^t$ denote the IA cutoffs.

For cutoffs c^{IA} and preference ranking \succ, let \bar{s} denote the most preferred school with $rk(\bar{s}) \geq c^{IA}_{\bar{s}}$. Also, let $\bar{S} \subseteq S$ be the largest set such that for each $s \in \bar{S}$, $s \succ \bar{s}$ or $s = \bar{s}$ and $rk(s) \geq c^{IA}_{\bar{s}} - 1$. Then, the probability that type v is assigned to school s when choosing neighborhood h and reporting preference ranking \succ is equal to

$$\lambda^{IA}_{vs}(h, \succ, \tau) = 0 \text{ if } s \notin \bar{S}, \text{ and otherwise,}$$

$$\lambda^{IA}_{vs}(h, \succ, \tau) = \max \left\{ 0, \min \left\{ c^{IA}_{s'} : s' \succ s, s' \in \bar{S} \right\} - c^{DA}_{s} \right\}.$$
\(S \times [0, 1] \), given by
\[
G_\tau \left((\succ, \succ', s, r) \in P^2 \times S \times [0, 1] : \succ \in P', \succ' \in P'', s \in S', r \in (r_0, r_1) \right)
\]
\[
= \tau \left((v, h, \succ') \in V \times H \times P : \succ_{vh} \in P', s_h \in S', \succ' \in P'' \right) \times (r_1 - r_0),
\]
for each \(P', P'' \subseteq P, S' \subseteq S \) and \((r_0, r_1) \subseteq [0, 1]\).

For a vector \(c \in [1, 2(|S| + 1)]^{|S|} \) consider the demand function \(D : [1, 2(|S| + 1)]^{|S|} \rightarrow [0, 1] \) given by
\[
D_s(c) = G_\tau \left((\succ, \succ', s, r) \in P^2 \times S \times [0, 1] : r \in (r_0, r_1) \right)
\]
\[
= \tau \left((v, h, \succ') \in V \times H \times P : \succ_{vh} \in P', s_h \in S', \succ' \in P'' \right) \times (r_1 - r_0),
\]
for each \(P', P'' \subseteq P, S' \subseteq S \) and \((r_0, r_1) \subseteq [0, 1]\).

Define a sequence of vectors \((c^t)_{t=1}^\infty\) recursively by \(c^1 = 0 \) and
\[
c^t_s = \begin{cases}
0 & \text{if } D_s(c^t) < q_s, \\
\min \left\{ x \in [0, 1] : D_s(c^t(s, x)) \leq q_s \right\} & \text{otherwise},
\end{cases}
\]
and let \(c^{IA} := \lim_{t \to \infty} c^t \) be the IA cutoffs.

Again, for cutoffs \(c^{IA} \), preference ranking \(\succ \) and neighborhood choice \(h \), let \(\bar{s} \) denote the most preferred school with \(2rk(s) + \mathbb{1}[s_h = s] \geq c^A_s \). Also, let \(\bar{S} \subseteq S \) be the largest set such that for each \(s \in \bar{S} \), \(s \succ \bar{s} \) or \(s = \bar{s} \) and \(rk(s) + \mathbb{1}[s_h = s] \geq c^A_s - 1 \). Then, the probability that type \(v \) is assigned to school \(s \) when choosing neighborhood \(h \) and reporting preference ranking \(\succ \) is equal to \(\lambda^{IA}_{vs}(h, \succ, \tau) = 0 \) if \(s \notin \bar{S} \), and otherwise,
\[
\lambda^{IA}_{vs}(h, \succ, \tau) = \max \left\{ 0, \min \left\{ c^A_{s'} : s' \succ s, s' \in \bar{S} \right\} - c^A_s \right\}.
\]

We briefly discuss how some of the results we established for the Deferred Acceptance mechanism extend to the setting with IA. Theorem 3 applies to IA with neighborhood priorities since a family can guarantee a neighborhood school by ranking it as a first choice. Since lowest-income families can guarantee underdemanded neighborhoods and schools for both versions of IA, Theorem 5 applies to IA as well.
We finish this section by discussing how IA compares to DA. When there are no neighborhood priorities and families have identical ordinal preferences over schools, Abdulkadiroğlu et al. (2011) show that all families’ prefer IA to DA. We illustrate by an example that this is not necessarily the case when there are neighborhood priorities. In what follows we use IA to denote the version with neighborhood priorities.

Example 1. There are three neighborhoods \(H = \{h_1, h_2, h_3\} \) and three schools \(S = \{s_1, s_2, s_3\} \), where \(q_{h_1} = 2 \) and \(q_{h_2} = q_{h_3} = 0.4 \), \(q_{s_1} = 0.4 \) and \(q_{s_2} = q_{s_3} = 0.58 \). Economy \(\eta \) is supported at only three points \(v_1, v_2 \) and \(v_3 \), with

\[
\eta(v \in V : v = v_1) = 0.2
\]

and

\[
\eta(v \in V : v = v_2) = \eta(v \in V : v = v_3) = 0.4,
\]

where \(v_1, v_2 \) and \(v_3 \) are shown in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>((h_1, s_1))</th>
<th>((h_1, s_2))</th>
<th>((h_1, s_3))</th>
<th>((h_2, s_1))</th>
<th>((h_2, s_2))</th>
<th>((h_2, s_3))</th>
<th>((h_3, s_1))</th>
<th>((h_3, s_2))</th>
<th>((h_3, s_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_1)</td>
<td>0.95</td>
<td>0.9</td>
<td>0.8</td>
<td>0.15</td>
<td>0.1</td>
<td>0</td>
<td>0.15</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>(v_2)</td>
<td>0.95</td>
<td>0.9</td>
<td>0.8</td>
<td>0.95</td>
<td>0.9</td>
<td>0.8</td>
<td>0.15</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>(v_3)</td>
<td>0.15</td>
<td>0.1</td>
<td>0</td>
<td>0.15</td>
<td>0.1</td>
<td>0</td>
<td>0.15</td>
<td>0.1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1: Valuations

There is a CE of DN, where

- \(p_{h_1}^{IA} = 0.5 \), \(p_{h_2}^{IA} = 0.2 \) and \(p_{h_3}^{IA} = 0 \),

- all type \(v_1 \) families choose neighborhood \(h_1 \) and submit their true preference rankings,

- all type \(v_2 \) families choose neighborhood \(h_2 \) and submit their true preference rankings,
all type v_3 families choose neighborhood h_3 and submit preference ranking $s_2 \succ s_1 \succ s_3$.

and a CE of IA, where

- $p_{h_1}^{IA} = 0.5$, $p_{h_2}^{IA} = 0.2$ and $p_{h_3}^{IA} = 0$,

- all type v_1 families choose neighborhood h_1 and submit their true preference rankings,

- all type v_2 families choose neighborhood h_2 and submit their true preference rankings,

- all type v_3 families choose neighborhood h_3 and submit preference ranking $s_2 \succ s_1 \succ s_3$.

The expected utility of type v_3 under IA is 0.1, whereas, under DN her expected utility is

$$\frac{1}{4} \times 0.15 + \frac{3}{4} \times \frac{58}{60} \times 0.1 > 0.1.$$

Thus, when there are neighborhood priorities, families in less preferred neighborhoods may prefer DN to IA.

B Aggregate Welfare and (In)Efficiency

B.1 Overview

None of the studied assignment mechanisms maximizes aggregate welfare. The goal of this section is to quantify the inefficiencies admitted by DN, DA and NA by comparing them to two benchmarks: (1) welfare maximizing assignment (first best), and (2)
welfare maximizing stable assignment. All subsequent analysis builds on the discrete economy model of Section 6.1.

B.2 Results

Our first benchmark is the (aggregate) welfare maximizing assignment. A joint neighborhood-school assignment of families is given by a mapping \(\mu : F \to H \times S \), satisfying

\[
\begin{align*}
&\bullet \sum_{s \in S} |\mu^{-1}(h,s)| \leq q_h, \forall h \in H, \\
&\bullet \sum_{h \in H} |\mu^{-1}(h,s)| \leq q_s, \forall s \in S.
\end{align*}
\]

Let \(\mathcal{M} \) denote the set of all assignments. We say assignment \(\mu^* \) is welfare maximizing assignment if it solves,

\[
\mu^* = \arg \max_{\mu \in \mathcal{M}} \sum_{f \in F} v_f(\mu(f)).
\]

When families valuations for joint neighborhood-school assignment take values of either zero or one, finding welfare maximizing assignment reduces to the NP-complete 3-dimensional matching problem (Karp, 1972). Therefore, finding a welfare maximizing assignment is NP-hard problem. The problem is tractable in the special case where families’ valuations for neighborhood schools are additively separable.

Our second benchmark is the welfare maximizing stable assignment. When the school district grants neighborhood priorities, stability (also known as elimination of justified-envy) requires that a family is assigned to a school she prefers less than her neighborhood school only if the latter does not admit any family residing outside of the school’s neighborhood. Formally, assignment \(\mu \) is stable if there are no families \(f, f' \in F \), such that \(\mu(f) = (h,s), \mu(f') = (h',s_h), v_f(h,s_h) > v_f(\mu(f)) \) and \(h' \neq h \).

To simplify the analysis, we consider additively separable valuations for neighborhoods.
and schools. Moreover, instead of maximizing welfare in the entire set of stable assignments, we first fix families’ neighborhood choices $\sigma^* : F \to \bar{H}$ to maximize the sum of neighborhood valuations, and then maximize aggregate welfare in the set of stable assignments that ‘agree’ with σ^*, i.e., for all $f \in F$, there is an $s \in S$, such that $\mu(f) = (\sigma^*(f), s)$.

Even with the simplifications above, finding a welfare maximizing stable assignment is an NP-hard problem. However, we solve this problem in our simulated environment using the methodology developed by Abdulkadiroğlu, Dur, and Grigoryan (2021). The authors provide an algorithm that is polynomial time in the number of students, but potentially exponential time in the number of schools. Since the number of school districts is typically much smaller than the number of students, the algorithm is tractable for real-life problems.

In the remainder of this section, we compare welfare across assignment mechanisms through simulations. There 1000 students, 10 neighborhoods and 10 schools. The valuation of family f for the joint assignment to neighborhood h and school s is equal to

$$v_f(h, s) = \alpha U_h + \beta U_s + 0.5\epsilon_{fh} + 0.5\epsilon_{fs},$$

where

- U_h and U_s are the common valuation for neighborhood h and schools s, respectively,
- ϵ_{fh} and ϵ_{fs} are the idiosyncratic valuations of family f for neighborhood h and schools s, respectively,
- α and β are parameters.

Values of U_h, U_s, ϵ_{fh} and ϵ_{fs} are iid uniform draws from the unit interval. The capacity of school s is $100 + \kappa_s$, where κ_s is a random draw from the set $\{1, 2, ..., 100/\delta\}$. We
report results for the following values for our parameters: \(\alpha = 0.5, \beta \in \{0, 0.5, 1\} \) and \(\delta \in \{1, 2.4\} \).
<table>
<thead>
<tr>
<th>β (1)</th>
<th>δ (2)</th>
<th>DN (3)</th>
<th>DA (4)</th>
<th>NA (5)</th>
<th>WM (6)</th>
<th>WMS (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1.392627</td>
<td>1.392580</td>
<td>1.302574</td>
<td>1.393059</td>
<td>1.393059</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.392463</td>
<td>1.392411</td>
<td>1.302574</td>
<td>1.393055</td>
<td>1.393055</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.392024</td>
<td>1.391933</td>
<td>1.302574</td>
<td>1.393052</td>
<td>1.393050</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1.649449</td>
<td>1.629367</td>
<td>1.544505</td>
<td>1.701826</td>
<td>1.695353</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.622352</td>
<td>1.569282</td>
<td>1.544505</td>
<td>1.676637</td>
<td>1.666805</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.591032</td>
<td>1.527366</td>
<td>1.544505</td>
<td>1.657942</td>
<td>1.645484</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.925808</td>
<td>1.845085</td>
<td>1.886450</td>
<td>2.026295</td>
<td>2.008159</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.859656</td>
<td>1.717312</td>
<td>1.886450</td>
<td>1.966318</td>
<td>1.940483</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.830423</td>
<td>1.654449</td>
<td>1.886450</td>
<td>1.925065</td>
<td>1.892514</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>1.638315</td>
<td>1.5688650</td>
<td>1.544510</td>
<td>1.681472</td>
<td>1.669774</td>
</tr>
</tbody>
</table>

Table 2: Aggregate Welfare, $\alpha = 0.5$

Columns (6) and (7) show average welfare for welfare maximizing assignment and welfare maximizing stable assignment, respectively. Simulations reveal that the average inefficiency under DN is more than twice smaller than those under DA and NA.

References

